cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Lucian Craciun

Lucian Craciun's wiki page.

Lucian Craciun has authored 6 sequences.

A320467 Two-column table read by rows: The Mayan 260-day Tzolkin cycle, with day names replaced by numbers.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 1, 14, 2, 15, 3, 16, 4, 17, 5, 18, 6, 19, 7, 20, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 1, 7, 2, 8, 3, 9, 4, 10, 5, 11, 6, 12, 7, 13, 8, 14, 9, 15, 10, 16, 11, 17, 12, 18
Offset: 1

Author

Lucian Craciun, Oct 13 2018

Comments

Day 1 of year 1 of the Mayan Long Count calendar (0.0.1.0.1) coincides with the first day of the Tzolkin cycle (1,1). Two Tzolkin cycles before that date, there was a new moon.

Examples

			The first pair, (1,1), represents 1 Imix; the second pair, (2,2), represents 2 Ik; the thirteenth pair, (13,13), represents 13 Ben; the fourteenth pair, (1,14), represents 1 Ix; the fifteenth pair, (2,15), represents 2 Men; etc.
		

Crossrefs

Programs

  • Mathematica
    For[{A := {}, k := 0}, k < 260, k++, A = Append[A, {1 + Mod[k, 13], 1 + Mod[k, 20]}]]; Flatten[A]
    a[n_]:=(Mod[(n-1)/2, 13] + 1)*Mod[n, 2]+(Mod[n/2-1, 20] + 1)*(1-Mod[n, 2]); Array[a, 260] (* Stefano Spezia, Dec 07 2018 *)

Formula

a(2n-1) = ((n - 1) mod 13) + 1.
a(2n) = ((n - 1) mod 20) + 1.
a(n) = ((n - 1)/2 mod 13 + 1)*(n mod 2) + ((n/2 - 1) mod 20 + 1)*(1 - (n mod 2)). - Stefano Spezia, Dec 07 2018

A283074 Numbers k such that the central binomial coefficient C(2*k,k) is divisible by k^5.

Original entry on oeis.org

1, 84331608790, 94482127740, 164273806200, 438726722148, 541278246600, 549361342530, 808172086449, 912226745430, 959218287720, 1017676553985, 1017868271175, 1078659050256, 1286556180525, 1418394308100, 1475851476960, 1489765799610, 1535790227400, 1562434592400, 1642639268270
Offset: 1

Author

Lucian Craciun, Feb 28 2017

Keywords

Comments

Equivalently, numbers k such that the k-th Catalan number C(2*k,k)/(k+1) is divisible by k^5.
The asymptotic density of this sequence is 2.83248121476... * 10^(-10) (Ford and Konyagin, 2021). - Amiram Eldar, Jan 26 2021

Examples

			The central binomial coefficient C(2*84331608790,84331608790) is divisible by 84331608790^5.
		

Extensions

a(3)-a(20) from Giovanni Resta, Mar 03 2017

A283073 Numbers k such that the central binomial coefficient C(2*k,k) is divisible by k^4.

Original entry on oeis.org

1, 227736432, 338956200, 386160984, 482213160, 544508118, 548823405, 715592220, 726922482, 731987190, 1427877360, 1448431600, 1467104760, 1490842353, 1491241258, 1504640335, 1646570115, 1852712100, 1923506200, 1923927460, 1924947570, 2056580995, 2064409413
Offset: 1

Author

Lucian Craciun, Feb 28 2017

Keywords

Comments

Equivalently, numbers k such that the k-th Catalan number C(2*k,k)/(k+1) is divisible by k^4.
The asymptotic density of this sequence is 1.330129946... * 10^(-7) (Ford and Konyagin, 2021). - Amiram Eldar, Jan 26 2021

Examples

			The central binomial coefficient C(2*227736432,227736432) is divisible by 227736432^4.
		

Programs

  • Mathematica
    A283073:={}; k:=4; For[n:=1, n<=10^9, n++, {f=FactorInteger[n], For[j:=1, j<=Length[f], j++, {b=True, If[Sum[Floor[2n/f[[j, 1]]^i]-2 Floor[n/f[[j, 1]]^i], {i, 1, Length[IntegerDigits[2n, f[[j, 1]]]]}]A283073=Append[A283073, n]]}] (* Legendre's formula for drastic time reduction *)

Extensions

a(11)-a(22) from Giovanni Resta, Feb 28 2017

A282529 Decimal expansion of Product_{n>=2} (1-1/n!).

Original entry on oeis.org

3, 9, 5, 3, 3, 8, 5, 6, 7, 3, 6, 7, 4, 4, 5, 5, 6, 6, 0, 3, 2, 3, 5, 6, 2, 0, 0, 4, 3, 1, 1, 8, 0, 6, 1, 3, 0, 2, 6, 6, 5, 6, 4, 8, 6, 7, 5, 8, 7, 2, 0, 1, 3, 2, 5, 0, 1, 1, 9, 7, 3, 9, 0, 1, 5, 1, 7, 4, 1, 6, 2, 0, 3, 8, 4, 7, 7, 5, 6, 1, 2, 6, 7, 0, 9, 2, 0, 0, 7, 7, 9, 3, 8, 9, 1, 0, 2, 2, 7, 0, 1, 1, 5, 8, 6, 8, 5, 4, 9, 6, 4, 0, 8, 4, 6, 7
Offset: 0

Author

Lucian Craciun, Feb 22 2017

Keywords

Comments

Conjectured to be irrational, transcendental and normal, none have been shown.

Examples

			0.39533856736744556603235620043118061302665648675872...
		

Crossrefs

Programs

Formula

Equals 1/A247551. - Amiram Eldar, Sep 15 2023

A282346 Least number m > 1 such that the central binomial coefficient C(2m,m) is divisible by m^n.

Original entry on oeis.org

2, 924, 154836, 227736432, 84331608790, 1138842118714300
Offset: 1

Author

Keywords

Comments

Equivalently, least number m > 1 such that the m-th Catalan number C(2m,m)/(m+1) is divisible by m^n. - Lucian Craciun, Mar 01 2017
a(6) <= 4380346834858680. - David A. Corneth, Mar 04 2017
a(7) <= 2404760413443713325. - Giovanni Resta, Mar 16 2017

Programs

  • Mathematica
    f[n_] := Block[{k = 2}, While[Mod[Binomial[2k, k], k^n] > 0, k++]; k]

Extensions

a(4)-a(5) from Giovanni Resta, Feb 23 2017
a(6) from Giovanni Resta, Mar 15 2017

A282163 Numbers k such that the central binomial coefficient C(2*k,k) is divisible by k^3.

Original entry on oeis.org

1, 154836, 985320, 1108536, 1113959, 1492260, 1576696, 1632708, 1649238, 1684540, 1805570, 1988008, 2508792, 2548810, 2550408, 2659260, 2698740, 2746590, 2995122, 3074552, 3286710, 3330795, 3538458, 3574200, 3730155, 4039932, 4160240, 4318548, 4374370, 4426695, 4523985
Offset: 1

Author

Lucian Craciun, Feb 07 2017

Keywords

Comments

Equivalently, numbers k such that the k-th Catalan number C(2*k,k)/(k+1) is divisible by k^3. - Lucian Craciun, Feb 09 2017
The asymptotic density of this sequence is 0.000031511777... (Ford and Konyagin, 2021). - Amiram Eldar, Jan 26 2021

Examples

			The central binomial coefficient C(2*154836,154836) is divisible by 154836^3.
		

Programs

  • Maple
    A282163 := proc (n, m) local a, cbc, k; a := {}; cbc := binomial(2*n, n); for k from n+1 to m do cbc := cbc*(4-2/k); if type(cbc/k^3, integer) then a := `union`(a, {k}) end if end do; a end proc; A282163(0, 10^6)
  • Mathematica
    Select[Table[n, {n, 10^6}], IntegerQ[Binomial[2#, #]/#^3] &] (* for small n *)
    n := 0; m := 10^6; A282163 := {}; cbc := Binomial[2n, n]; For[k := n+1, k <= m, k++, {cbc *= 4-2/k, If[IntegerQ[cbc/k^3], A282163 = Append[A282163, k]]}] (* for large m *)
    A282163:={}; k:=3; For[n:=1, n<=10^6, n++, {f=FactorInteger[n], For[j:=1, j<=Length[f], j++, {b=True, If[Sum[Floor[2n/f[[j, 1]]^i]-2 Floor[n/f[[j, 1]]^i], {i, 1, Length[IntegerDigits[2n, f[[j, 1]]]]}]A282163=Append[A282163, n]]}] (* Legendre's formula for drastic time reduction, Lucian Craciun, Feb 28 2017; optimized by Lucian Craciun, Mar 02 2017 *)