cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A014847 Numbers k such that k-th Catalan number C(2k,k)/(k+1) is divisible by k.

Original entry on oeis.org

1, 2, 6, 15, 20, 28, 42, 45, 66, 77, 88, 91, 104, 110, 126, 140, 153, 156, 170, 187, 190, 204, 209, 210, 220, 228, 231, 238, 240, 266, 276, 299, 308, 312, 315, 322, 325, 330, 345, 368, 378, 414, 420, 429, 435, 440, 442, 450, 459, 460, 464, 468, 476, 483, 493
Offset: 1

Views

Author

Keywords

Comments

The sequence does not contain any odd primes p (follows by quadratic reciprocity and field structure of Z/pZ). Aside from the first 2 terms, all other terms are composite integers. - Thomas M. Bridge, Nov 03 2013
Equivalently, numbers such that binomial(2n, n) = 0 (mod n). Indices of zeros in A059288. See A260640 (and A260636) for the analogs for 3n. - M. F. Hasler, Nov 11 2015
The 2nd comment is true because gcd(n,n+1) = 1 and n+1 divides C(2n,n). The 1st comment then follows, because prime p does not divide C(2p,p) = 2p*(2p-1)*...*(p+1)/(p*(p-1)*...*1) unless p = 2. - Jonathan Sondow, Jan 07 2018
A number n is in the sequence if and only if, for each prime p dividing n, the number of carries in the addition n+n in base p is at least the p-adic valuation of n. In particular, if n is squarefree, the condition is that at least one base-p digit of n is at least p/2. - Robert Israel, Jan 07 2018
If A is the set of all a(k)'s, Pomerance proved that the upper density of A is at most 1 - log 2 = 0.30685... and conjectured that A has positive lower density. I improved Pomerance's result by showing that the upper density of A is at most 1 - log 2 - 0.05551 = 0.25134... Numerically, this upper density seems to be less than 0.11. - Carlo Sanna, Jan 28 2018
The asymptotic density of this sequence is 0.11424743... (Ford and Konyagin, 2021). - Amiram Eldar, Jan 26 2021

Crossrefs

Programs

  • Magma
    [n: n in [1..500] | IsZero((Binomial(2*n, n) div (n+1)) mod n)]; // Vincenzo Librandi, Jan 29 2016
  • Maple
    filter:= proc(n) local F, f, r, c, t,j;
      F:= ifactors(n)[2];
      for f in F do
        r:= convert(n,base,f[1]);
        c:= 0: t:= 0:
        for j from 1 to nops(r) do
          if 2*r[j]+c >= f[1] then
              c:= 1; t:= t+1;
          else c:= 0
          fi;
        od;
        if t < f[2] then return false fi;
      od;
      true
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Jan 07 2018
  • Mathematica
    fQ[n_] := IntegerQ[Binomial[2n, n]/ n]; Select[ Range@495, fQ@# &] (* Robert G. Wilson v, Jun 19 2006 *)
    Select[Table[{CatalanNumber[n],n},{n,500}],Divisible[#[[1]],#[[2]]]&][[All,2]] (* Harvey P. Dale, Nov 07 2022 *)
  • PARI
    is_A014847(n)=!binomod(2*n,n,n) \\ Suitable for large n. Using binomod.gp by M. Alekseyev, cf. links. - M. F. Hasler, Nov 11 2015
    
  • PARI
    for(n=1, 1e3, if(binomial(2*n, n)/(n+1) % n==0, print1(n", "))) \\ Altug Alkan, Nov 11 2015
    
  • Python
    from _future_ import division
    A014847_list, b = [], 1
    for n in range(1,10**3):
        if not b % n:
            A014847_list.append(n)
        b = b*(4*n+2)//(n+2) # Chai Wah Wu, Jan 27 2016
    

Formula

It seems that a(n)/n is bounded and more precisely that lim_{n -> infinity} a(n)/n = C exists with 9 <= c < 10. - Benoit Cloitre, Aug 13 2002
a(n) = A004782(n) - 1. - Enrique Pérez Herrero, Feb 03 2013

A121943 Numbers k such that the central binomial coefficient C(2k,k) is divisible by k^2.

Original entry on oeis.org

1, 924, 1287, 2002, 2145, 3366, 3640, 3740, 4199, 6006, 6118, 6552, 7480, 7920, 8580, 8855, 10465, 10920, 11385, 11592, 12285, 12325, 12441, 12540, 12597, 12920, 13224, 13398, 13566, 15080, 15834, 18270, 18354, 18837, 18972, 19227, 23562, 23870, 25641, 25740
Offset: 1

Views

Author

Tanya Khovanova, Sep 03 2006

Keywords

Comments

Equivalently, numbers n such that the n-th Catalan number C(2n,n)/(n+1) is divisible by n^2. - Lucian Craciun, Feb 09 2017
The asymptotic density of this sequence is 0.00322778... (Ford and Konyagin, 2021). - Amiram Eldar, Jan 26 2021

Crossrefs

Programs

  • Mathematica
    Select[Table[n, {n, 20000}], IntegerQ[Binomial[2#, # ]/#^2] &]
  • PARI
    lista(nn) = {for(n=1, nn, if(Mod(binomial(2*n, n), n^2) == 0, print1(n, ", ")));} \\ Altug Alkan, Mar 27 2016
  • Python
    from _future_ import division
    A121943_list, b = [], 2
    for n in range(1,10**5):
        if not b % (n**2):
            A121943_list.append(n)
        b = b*(4*n+2)//(n+1) # Chai Wah Wu, Mar 27 2016
    

A282672 Numbers k such that the central binomial coefficient C(2*k,k) is divisible by k^6.

Original entry on oeis.org

1, 1138842118714300, 1605078397568386, 1785922862964240, 1878157384495600, 2020105305316098, 2055406015517400, 2071857393746595, 2310442996851990, 2450253379658700, 2513216312053944, 2966830431558840, 2990886595291870, 3228082757486928, 3318987930069240
Offset: 1

Views

Author

Giovanni Resta, Mar 16 2017

Keywords

Comments

Also numbers k such that the k-th Catalan number C(2*k,k)/(k+1) is divisible by k^6.
The asymptotic density of this sequence is 3.40390904801... *10^(-13) (Ford and Konyagin, 2021). - Amiram Eldar, Jan 26 2021

Examples

			Let E(n,p) be the exponent of the prime p in the factorization of n. Note that E(n!,p) can be easily found with Legendre's formula without computing n!. Then, t = 1138842118714300 is in the sequence because for each prime p dividing t we have E(C(2*t,t),p) = E((2*t)!,p) - 2*E(t!,p) >= 6*E(t,p).
		

Crossrefs

A283073 Numbers k such that the central binomial coefficient C(2*k,k) is divisible by k^4.

Original entry on oeis.org

1, 227736432, 338956200, 386160984, 482213160, 544508118, 548823405, 715592220, 726922482, 731987190, 1427877360, 1448431600, 1467104760, 1490842353, 1491241258, 1504640335, 1646570115, 1852712100, 1923506200, 1923927460, 1924947570, 2056580995, 2064409413
Offset: 1

Views

Author

Lucian Craciun, Feb 28 2017

Keywords

Comments

Equivalently, numbers k such that the k-th Catalan number C(2*k,k)/(k+1) is divisible by k^4.
The asymptotic density of this sequence is 1.330129946... * 10^(-7) (Ford and Konyagin, 2021). - Amiram Eldar, Jan 26 2021

Examples

			The central binomial coefficient C(2*227736432,227736432) is divisible by 227736432^4.
		

Crossrefs

Programs

  • Mathematica
    A283073:={}; k:=4; For[n:=1, n<=10^9, n++, {f=FactorInteger[n], For[j:=1, j<=Length[f], j++, {b=True, If[Sum[Floor[2n/f[[j, 1]]^i]-2 Floor[n/f[[j, 1]]^i], {i, 1, Length[IntegerDigits[2n, f[[j, 1]]]]}]A283073=Append[A283073, n]]}] (* Legendre's formula for drastic time reduction *)

Extensions

a(11)-a(22) from Giovanni Resta, Feb 28 2017

A283074 Numbers k such that the central binomial coefficient C(2*k,k) is divisible by k^5.

Original entry on oeis.org

1, 84331608790, 94482127740, 164273806200, 438726722148, 541278246600, 549361342530, 808172086449, 912226745430, 959218287720, 1017676553985, 1017868271175, 1078659050256, 1286556180525, 1418394308100, 1475851476960, 1489765799610, 1535790227400, 1562434592400, 1642639268270
Offset: 1

Views

Author

Lucian Craciun, Feb 28 2017

Keywords

Comments

Equivalently, numbers k such that the k-th Catalan number C(2*k,k)/(k+1) is divisible by k^5.
The asymptotic density of this sequence is 2.83248121476... * 10^(-10) (Ford and Konyagin, 2021). - Amiram Eldar, Jan 26 2021

Examples

			The central binomial coefficient C(2*84331608790,84331608790) is divisible by 84331608790^5.
		

Crossrefs

Extensions

a(3)-a(20) from Giovanni Resta, Mar 03 2017

A282346 Least number m > 1 such that the central binomial coefficient C(2m,m) is divisible by m^n.

Original entry on oeis.org

2, 924, 154836, 227736432, 84331608790, 1138842118714300
Offset: 1

Views

Author

Keywords

Comments

Equivalently, least number m > 1 such that the m-th Catalan number C(2m,m)/(m+1) is divisible by m^n. - Lucian Craciun, Mar 01 2017
a(6) <= 4380346834858680. - David A. Corneth, Mar 04 2017
a(7) <= 2404760413443713325. - Giovanni Resta, Mar 16 2017

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 2}, While[Mod[Binomial[2k, k], k^n] > 0, k++]; k]

Extensions

a(4)-a(5) from Giovanni Resta, Feb 23 2017
a(6) from Giovanni Resta, Mar 15 2017
Showing 1-6 of 6 results.