cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 39 results. Next

A235037 Number of terms of A014847 that are not greater than n.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 1

Views

Author

Bruno Berselli, Jan 05 2014 - sequence suggested by Umberto Cerruti (University of Turin, Italy)

Keywords

Examples

			a(6)=3 because the terms of A014847 not greater than 6 are 1,2,6.
a(17)=4 because the terms of A014847 not greater than 17 are 1,2,6,15.
		

Crossrefs

Cf. A014847.

Programs

  • Mathematica
    a[n_] := Module[{ris}, ris = {}; Do[If[Mod[Binomial[2 k, k], k] == 0, AppendTo[ris, k]], {k, n}]; Length[ris]]; Table[a[n], {n, 100}]

A059288 a(n) = binomial(2*n,n) mod n.

Original entry on oeis.org

0, 0, 2, 2, 2, 0, 2, 6, 2, 6, 2, 4, 2, 6, 0, 6, 2, 6, 2, 0, 6, 6, 2, 12, 2, 6, 20, 0, 2, 4, 2, 6, 9, 6, 7, 16, 2, 6, 20, 20, 2, 0, 2, 4, 0, 6, 2, 12, 2, 6, 3, 44, 2, 6, 32, 32, 39, 6, 2, 36, 2, 6, 12, 6, 5, 0, 2, 36, 66, 40, 2, 36, 2, 6, 45, 32, 0, 66, 2, 20, 20, 6, 2
Offset: 1

Views

Author

N. J. A. Sloane, Jan 25 2001

Keywords

Crossrefs

Programs

  • Maple
    binomial(2*n,n) mod n;
    seq(irem(binomial(2*n,n),n),n=1..83); # Zerinvary Lajos, Apr 20 2008
  • Mathematica
    Table[Mod[Binomial[2*n, n], n], {n, 1, 25}] (* G. C. Greubel, Jan 04 2017 *)
  • PARI
    a(n) = binomial(2*n, n) % n; \\ Harry J. Smith, Jun 25 2009

Formula

a(n) = Catalan(n) mod n. - Jonathan Sondow, Dec 13 2013
a(p) = 2, p an odd prime (provable using Wolstenholme's theorem). - David Trimas, Feb 11 2025

A121943 Numbers k such that the central binomial coefficient C(2k,k) is divisible by k^2.

Original entry on oeis.org

1, 924, 1287, 2002, 2145, 3366, 3640, 3740, 4199, 6006, 6118, 6552, 7480, 7920, 8580, 8855, 10465, 10920, 11385, 11592, 12285, 12325, 12441, 12540, 12597, 12920, 13224, 13398, 13566, 15080, 15834, 18270, 18354, 18837, 18972, 19227, 23562, 23870, 25641, 25740
Offset: 1

Views

Author

Tanya Khovanova, Sep 03 2006

Keywords

Comments

Equivalently, numbers n such that the n-th Catalan number C(2n,n)/(n+1) is divisible by n^2. - Lucian Craciun, Feb 09 2017
The asymptotic density of this sequence is 0.00322778... (Ford and Konyagin, 2021). - Amiram Eldar, Jan 26 2021

Crossrefs

Programs

  • Mathematica
    Select[Table[n, {n, 20000}], IntegerQ[Binomial[2#, # ]/#^2] &]
  • PARI
    lista(nn) = {for(n=1, nn, if(Mod(binomial(2*n, n), n^2) == 0, print1(n, ", ")));} \\ Altug Alkan, Mar 27 2016
  • Python
    from _future_ import division
    A121943_list, b = [], 2
    for n in range(1,10**5):
        if not b % (n**2):
            A121943_list.append(n)
        b = b*(4*n+2)//(n+1) # Chai Wah Wu, Mar 27 2016
    

A282163 Numbers k such that the central binomial coefficient C(2*k,k) is divisible by k^3.

Original entry on oeis.org

1, 154836, 985320, 1108536, 1113959, 1492260, 1576696, 1632708, 1649238, 1684540, 1805570, 1988008, 2508792, 2548810, 2550408, 2659260, 2698740, 2746590, 2995122, 3074552, 3286710, 3330795, 3538458, 3574200, 3730155, 4039932, 4160240, 4318548, 4374370, 4426695, 4523985
Offset: 1

Views

Author

Lucian Craciun, Feb 07 2017

Keywords

Comments

Equivalently, numbers k such that the k-th Catalan number C(2*k,k)/(k+1) is divisible by k^3. - Lucian Craciun, Feb 09 2017
The asymptotic density of this sequence is 0.000031511777... (Ford and Konyagin, 2021). - Amiram Eldar, Jan 26 2021

Examples

			The central binomial coefficient C(2*154836,154836) is divisible by 154836^3.
		

Crossrefs

Programs

  • Maple
    A282163 := proc (n, m) local a, cbc, k; a := {}; cbc := binomial(2*n, n); for k from n+1 to m do cbc := cbc*(4-2/k); if type(cbc/k^3, integer) then a := `union`(a, {k}) end if end do; a end proc; A282163(0, 10^6)
  • Mathematica
    Select[Table[n, {n, 10^6}], IntegerQ[Binomial[2#, #]/#^3] &] (* for small n *)
    n := 0; m := 10^6; A282163 := {}; cbc := Binomial[2n, n]; For[k := n+1, k <= m, k++, {cbc *= 4-2/k, If[IntegerQ[cbc/k^3], A282163 = Append[A282163, k]]}] (* for large m *)
    A282163:={}; k:=3; For[n:=1, n<=10^6, n++, {f=FactorInteger[n], For[j:=1, j<=Length[f], j++, {b=True, If[Sum[Floor[2n/f[[j, 1]]^i]-2 Floor[n/f[[j, 1]]^i], {i, 1, Length[IntegerDigits[2n, f[[j, 1]]]]}]A282163=Append[A282163, n]]}] (* Legendre's formula for drastic time reduction, Lucian Craciun, Feb 28 2017; optimized by Lucian Craciun, Mar 02 2017 *)

A282672 Numbers k such that the central binomial coefficient C(2*k,k) is divisible by k^6.

Original entry on oeis.org

1, 1138842118714300, 1605078397568386, 1785922862964240, 1878157384495600, 2020105305316098, 2055406015517400, 2071857393746595, 2310442996851990, 2450253379658700, 2513216312053944, 2966830431558840, 2990886595291870, 3228082757486928, 3318987930069240
Offset: 1

Views

Author

Giovanni Resta, Mar 16 2017

Keywords

Comments

Also numbers k such that the k-th Catalan number C(2*k,k)/(k+1) is divisible by k^6.
The asymptotic density of this sequence is 3.40390904801... *10^(-13) (Ford and Konyagin, 2021). - Amiram Eldar, Jan 26 2021

Examples

			Let E(n,p) be the exponent of the prime p in the factorization of n. Note that E(n!,p) can be easily found with Legendre's formula without computing n!. Then, t = 1138842118714300 is in the sequence because for each prime p dividing t we have E(C(2*t,t),p) = E((2*t)!,p) - 2*E(t!,p) >= 6*E(t,p).
		

Crossrefs

A283073 Numbers k such that the central binomial coefficient C(2*k,k) is divisible by k^4.

Original entry on oeis.org

1, 227736432, 338956200, 386160984, 482213160, 544508118, 548823405, 715592220, 726922482, 731987190, 1427877360, 1448431600, 1467104760, 1490842353, 1491241258, 1504640335, 1646570115, 1852712100, 1923506200, 1923927460, 1924947570, 2056580995, 2064409413
Offset: 1

Views

Author

Lucian Craciun, Feb 28 2017

Keywords

Comments

Equivalently, numbers k such that the k-th Catalan number C(2*k,k)/(k+1) is divisible by k^4.
The asymptotic density of this sequence is 1.330129946... * 10^(-7) (Ford and Konyagin, 2021). - Amiram Eldar, Jan 26 2021

Examples

			The central binomial coefficient C(2*227736432,227736432) is divisible by 227736432^4.
		

Crossrefs

Programs

  • Mathematica
    A283073:={}; k:=4; For[n:=1, n<=10^9, n++, {f=FactorInteger[n], For[j:=1, j<=Length[f], j++, {b=True, If[Sum[Floor[2n/f[[j, 1]]^i]-2 Floor[n/f[[j, 1]]^i], {i, 1, Length[IntegerDigits[2n, f[[j, 1]]]]}]A283073=Append[A283073, n]]}] (* Legendre's formula for drastic time reduction *)

Extensions

a(11)-a(22) from Giovanni Resta, Feb 28 2017

A283074 Numbers k such that the central binomial coefficient C(2*k,k) is divisible by k^5.

Original entry on oeis.org

1, 84331608790, 94482127740, 164273806200, 438726722148, 541278246600, 549361342530, 808172086449, 912226745430, 959218287720, 1017676553985, 1017868271175, 1078659050256, 1286556180525, 1418394308100, 1475851476960, 1489765799610, 1535790227400, 1562434592400, 1642639268270
Offset: 1

Views

Author

Lucian Craciun, Feb 28 2017

Keywords

Comments

Equivalently, numbers k such that the k-th Catalan number C(2*k,k)/(k+1) is divisible by k^5.
The asymptotic density of this sequence is 2.83248121476... * 10^(-10) (Ford and Konyagin, 2021). - Amiram Eldar, Jan 26 2021

Examples

			The central binomial coefficient C(2*84331608790,84331608790) is divisible by 84331608790^5.
		

Crossrefs

Extensions

a(3)-a(20) from Giovanni Resta, Mar 03 2017

A282346 Least number m > 1 such that the central binomial coefficient C(2m,m) is divisible by m^n.

Original entry on oeis.org

2, 924, 154836, 227736432, 84331608790, 1138842118714300
Offset: 1

Views

Author

Keywords

Comments

Equivalently, least number m > 1 such that the m-th Catalan number C(2m,m)/(m+1) is divisible by m^n. - Lucian Craciun, Mar 01 2017
a(6) <= 4380346834858680. - David A. Corneth, Mar 04 2017
a(7) <= 2404760413443713325. - Giovanni Resta, Mar 16 2017

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 2}, While[Mod[Binomial[2k, k], k^n] > 0, k++]; k]

Extensions

a(4)-a(5) from Giovanni Resta, Feb 23 2017
a(6) from Giovanni Resta, Mar 15 2017

A004782 Numbers k such that 2*(2k-3)!/(k!*(k-1)!) is an integer.

Original entry on oeis.org

2, 3, 7, 16, 21, 29, 43, 46, 67, 78, 89, 92, 105, 111, 127, 141, 154, 157, 171, 188, 191, 205, 210, 211, 221, 229, 232, 239, 241, 267, 277, 300, 309, 313, 316, 323, 326, 331, 346, 369, 379, 415, 421, 430, 436, 441, 443, 451, 460, 461, 465, 469, 477
Offset: 1

Views

Author

Keywords

Comments

Superset of A081767, as proved by Luke Pebody. Terms not in A081767 include 3, 7, 127, 511, ... - Ralf Stephan, Oct 12 2004
See A260642 for A004782 \ A081767. - M. F. Hasler, Nov 11 2015
Equivalently, numbers k such that binomial(2k-3,k-1) == 0 (mod k*(k-1)/2), or: binomial(2k-2,k-1) == 0 (mod k^2-k), or: the Catalan number A000108(k-1) is divisible by k-1, i.e., a(n) = A014847(n) + 1. Indeed, 2(2k-3)!/(k!*(k-1)!) = 2(2k-2)!/(k!(k-1)!(2k-2)) = C(k-1)/(k-1). - M. F. Hasler, Nov 11 2015

Programs

  • Mathematica
    Select[Range[500], IntegerQ[2 (2 # - 3)!/(#! (# - 1)!)] &] (* Arkadiusz Wesolowski, Sep 06 2011 *)
  • PARI
    for(n=2, 999, binomial(2*n-2, n-1)%(n^2-n)||print1(n", "))
    
  • PARI
    is_A004782(n)=!binomod(2*n-2, n-1, n^2-n) \\ Using http://home.gwu.edu/~maxal/gpscripts/binomod.gp by M. Alekseyev. - M. F. Hasler, Nov 11 2015

Formula

a(n) = A014847(n) + 1. - Enrique Pérez Herrero, Feb 03 2013

Extensions

Offset corrected and initial term added by Arkadiusz Wesolowski, Sep 06 2011

A071416 a(n) = gcd(n, binomial(2*n, n)).

Original entry on oeis.org

1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 15, 2, 1, 6, 1, 20, 3, 2, 1, 12, 1, 2, 1, 28, 1, 2, 1, 2, 3, 2, 7, 4, 1, 2, 1, 20, 1, 42, 1, 4, 45, 2, 1, 12, 1, 2, 3, 4, 1, 6, 1, 8, 3, 2, 1, 12, 1, 2, 3, 2, 5, 66, 1, 4, 3, 10, 1, 36, 1, 2, 15, 4, 77, 6, 1, 20, 1, 2, 1, 28, 5, 2, 3, 88, 1, 10, 91, 4, 1, 2, 5
Offset: 1

Views

Author

Reinhard Zumkeller, May 29 2002

Keywords

Comments

a(n) = n for n in A014847. - Reinhard Zumkeller
a(n) = gcd(n, C(n)), C(n) the Catalan numbers. - Peter Luschny Oct 06 2011

Examples

			a(10) = gcd(10, binomial(20, 10)) = gcd(10, 184756) = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[GCD[n,Binomial[2n,n]],{n,100}] (* Harvey P. Dale, Nov 10 2011 *)
Showing 1-10 of 39 results. Next