A215158 Primes p such that (2*p - 1)*(4*p + 1)*(14*p - 1) divides Fibonacci(p).
727, 7507, 58417, 164767, 192697, 260317, 362977, 624847, 800557, 838837, 946417, 2107447, 2334187, 2382607, 2461717, 2495947, 2523517, 2566027, 2923747, 3169237, 3373177, 3373687, 3763717, 3771907, 3838897, 4143637, 4635277, 4741837, 4979047, 5097247
Offset: 1
Links
- Chris Caldwell, The Prime Glossary, Fibonacci number
- C. K. Caldwell, "Top Twenty" page, Fibonacci cofactor
Programs
-
Mathematica
Select[Prime@Range[10^3], Mod[Fibonacci[#], 112*#^3 - 36*#^2 - 12*# + 1] == 0 &]
-
PARI
a=-1; b=1; for(n=0, 2548623, a=a+b; b=b+a; p=2*n+1; if(isprime(p)&&Mod(b, 112*p^3-36*p^2-12*p+1)==0, print1(p, ", "))); \\ Arkadiusz Wesolowski, Nov 16 2013