cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215173 Numbers k such that k and k+1 are both of the form p*q^3 where p and q are distinct primes.

Original entry on oeis.org

135, 296, 375, 1431, 1592, 3992, 4023, 6183, 7624, 8936, 9368, 10071, 10232, 10375, 10984, 13256, 16551, 16712, 19143, 20871, 22328, 22375, 23031, 24488, 28375, 28376, 28647, 33271, 34856, 35127, 40311, 40472, 41336, 43767, 46791, 49624, 50408, 52375, 53271
Offset: 1

Views

Author

Michel Lagneau, Aug 05 2012

Keywords

Comments

Intersection of A065036 and A065036 - 1. - Robert Israel, Jun 15 2014

Examples

			135 is a member as 135 = 5*3^3 and 136 = 17*2^3.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 55000 do:x:=factorset(n):y:=factorset(n+1):x2:=sqrt(n):y2:=sqrt(n+1):n1:=nops(x):n2:=nops(y):if n1=2 and n2=2 and bigomega(n) = 4 and bigomega(n+1) = 4 and x2<>floor(x2) and y2<>floor(y2) then printf("%a, ", n):else fi:od:
    # Alternative:
    N:= 10^5: # to get all terms < N
    P1:= select(isprime,{2,seq(2*i+1,i=1..floor(N/16))}):
    P2:= select(t -> t^3 <= N/2,P1):
    B:= {seq(seq(p^3*q,q=select(`<`,P1,floor(N/p^3)) minus {p}),p=P2)}:
    B intersect map(`-`,B,1); # Robert Israel, Jun 15 2014
  • Mathematica
    lst={}; Do[f1=FactorInteger[n]; If[Sort[Transpose[f1][[2]]]=={1, 3}, f2=FactorInteger[n+1]; If[Sort[Transpose[f2][[2]]]=={1, 3}, AppendTo[lst, n]]], {n, 3, 55000}]; lst