cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A215197 Numbers k such that k and k + 1 are both of the form p*q^4 where p and q are distinct primes.

Original entry on oeis.org

2511, 7856, 10287, 15471, 15632, 18063, 20816, 28592, 36368, 40816, 54512, 75248, 88047, 93231, 101168, 126927, 134703, 160624, 163376, 170991, 178767, 210032, 215216, 217808, 220624, 254096, 256527, 274671, 280624, 292976, 334448, 347408, 443151, 482192
Offset: 1

Views

Author

Michel Lagneau, Aug 05 2012

Keywords

Comments

The smaller of adjacent terms in A178739. - R. J. Mathar, Aug 08 2012
These are numbers n such that n and n+1 both have 10 divisors. Proof: clearly n and n+1 cannot both be of the form p^9, so for contradiction assume either n and n+1 is of the form p*q^4 and the other is of the form r^9 where p, q, and r are prime. So p*q^4 is either r^9 - 1 = (r-1)(r^2+r+1)(r^6+r^3+1) or r^9 + 1 = (r+1)(r^2-r+1)(r^6-r^3+1). But these factors are relatively prime and so cannot represent p*q^4 unless one or more factors are units. But this does not happen for r > 2, and the case r = 2 does not work since neither 511 not 513 is of the form p*q^4. - Charles R Greathouse IV, Jun 19 2016

Examples

			2511 is a member as 2511 = 31*3^4 and 2512 = 157*2^4.
		

Crossrefs

Intersection of A005237 and A030628.

Programs

  • Maple
    with(numtheory):for n from 3 to 500000 do:x:=factorset(n):y:=factorset(n+1):n1:=nops(x):n2:=nops(y):if n1=2 and n2=2 then xx1:=x[1]*x[2]^4 : xx2:=x[2]*x[1]^4:yy1:=y[1]*y[2]^4: yy2:=y[2]*y[1]^4:if (xx1=n or xx2=n) and (yy1=n+1 or yy2=n+1) then printf("%a, ", n):else fi:fi:od:
  • Mathematica
    lst={}; Do[f1=FactorInteger[n]; If[Sort[Transpose[f1][[2]]]=={1, 4}, f2=FactorInteger[n+1]; If[Sort[Transpose[f2][[2]]]=={1, 4}, AppendTo[lst, n]]], {n, 3, 55000}]; lst
    (* First run program for A178739 *) Select[A178739, MemberQ[A178739, # + 1] &] (* Alonso del Arte, Aug 05 2012 *)
  • PARI
    is(n)=numdiv(n)==10 && numdiv(n+1)==10 \\ Charles R Greathouse IV, Jun 19 2016
    
  • PARI
    is(n)=vecsort(factor(n)[,2])==[1,4]~ && vecsort(factor(n+1)[,2])==[1,4]~ \\ Charles R Greathouse IV, Jun 19 2016

A215199 Smallest number k such that k and k+1 are both of the form p*q^n where p and q are distinct primes.

Original entry on oeis.org

14, 44, 135, 2511, 8991, 29888, 916352, 12393728, 155161088, 2200933376, 6856828928, 689278976, 481758175232, 3684603215871, 35419114668032, 2035980763136, 174123685117952, 9399153082499072, 19047348965998592, 203368956137832447, 24217192574746623, 2503092614937444351
Offset: 1

Views

Author

Michel Lagneau, Aug 05 2012

Keywords

Comments

a(15) <= 35419114668032. - Donovan Johnson, Aug 22 2012
If k is a term such that k = p*q^n and k+1 = r*s^n, where p,q,r,s are primes, then clearly q != s. Conjecture: q and s are either 2 or 3 for all terms. - Chai Wah Wu, Mar 10 2019
Since q^n and s^n are coprime, the Chinese Remainder Theorem can be used to find candidate terms to test, i.e., numbers k such that k+1 == 0 (mod s^n) and k+1 == 1 (mod q^n) (see Python code). - Chai Wah Wu, Mar 12 2019
From David A. Corneth, Mar 13 2019: (Start)
Conjecture: Let 1 <= D < 2^n be the denominator of N/D of (3/2)^n. Without loss of generality, if the conjecture above holds that (q, s) = (2, 3) then r = D + k*2^n for some n.
Example: for n = 100, we have the continued fraction of (3/2)^100 to be 406561177535215237, 2, 1, 1, 14, 9, 1, 1, 2, 2, 1, 4, 1, 2, 6, 5, 1, 195, 3, 26, 39, 6, 1, 1, 1, 2, 7, 1, 4, 2, 1, 11, 1, 25, 6, 1, 4, 3, 2, 112, 1, 2, 1, 3, 1, 3, 4, 8, 1, 1, 12, 2, 1, 3, 2, 2 from which we compute D = 519502503658624787456021964081. We find r = 1100840223501761745286594404230449 = D + 868 * 2^100 giving a(100) + 1 = r*3^100. (End)

Examples

			a(3) = 135 because 135 = 5*3^3 and 136 = 17*2^3;
a(4) = 2511 because 2511 = 31*3^4 and 2512 = 157*2^4.
		

Crossrefs

Programs

  • Maple
    psig := proc(n)
        local s,p ;
        s := [] ;
        for p in ifactors(n)[2] do
            s := [op(s),op(2,p)] ;
        end do:
        sort(s) ;
    end proc:
    A215199 := proc(n)
        local slim,smi,sma,ca,qi,q,p,k ;
        for slim from 0 do
            smi := slim*1000 ;
            sma := (slim+1)*1000 ;
            ca := sma ;
            q := 2 ;
            for qi from 1 do
                p := nextprime(floor(smi/q^n)-1) ;
                while p*q^n < sma do
                    if p <> q then
                        k := p*q^n ;
                        if psig(k+1) = [1,n] then
                            ca := min(ca,k) ;
                        end if;
                    end if;
                    p := nextprime(p) ;
                end do:
                if q^n >= sma then
                    break;
                end if;
                q := nextprime(q) ;
            end do:
            if ca < sma then
                return ca ;
            end if;
        end do:
    end proc:
    for n from 1 do
        print(A215199(n)) ;
    end do; # R. J. Mathar, Aug 07 2012
  • Python
    from sympy import isprime, nextprime
    from sympy.ntheory.modular import crt
    def A215199(n):
        l = len(str(3**n))-1
        l10, result = 10**l, 2*10**l
        while result >= 2*l10:
            l += 1
            l102, result = l10, 20*l10
            l10 *= 10
            q, qn = 2, 2**n
            while qn <= l10:
                s, sn = 2, 2**n
                while sn <= l10:
                    if s != q:
                        a, b = crt([qn,sn],[0,1])
                        if a <= l102:
                            a = b*(l102//b) + a
                        while a < l10:
                            p, t = a//qn, (a-1)//sn
                            if p != q and t != s and isprime(p) and isprime(t):
                                result = min(result,a-1)
                            a += b
                    s = nextprime(s)
                    sn = s**n
                q = nextprime(q)
                qn = q**n
        return result # Chai Wah Wu, Mar 12 2019

Extensions

a(10)-a(14) from Donovan Johnson, Aug 22 2012
a(15)-a(17) from Chai Wah Wu, Mar 09 2019
a(18)-a(22) from Chai Wah Wu, Mar 10 2019

A215198 Numbers n such that n and n + 1 are both of the form p*q^5 where p and q are distinct primes.

Original entry on oeis.org

8991, 9375, 335583, 364256, 488672, 535328, 677727, 690848, 755487, 768608, 864351, 908576, 924128, 955232, 1097631, 1377567, 1424223, 1608416, 1688607, 1875231, 2121632, 2124063, 2168288, 2277152, 2541536, 2575071, 2621727, 2901663, 3190624, 3241376, 3409375
Offset: 1

Views

Author

Michel Lagneau, Aug 05 2012

Keywords

Comments

The smaller of adjacent values in A178740. - R. J. Mathar, Aug 08 2012

Examples

			8991 is a member as 8991 = 37*3^5 and 8992 = 281*2^5.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 3 to 10^7 do:x:=factorset(n):y:=factorset(n+1):n1:=nops(x):n2:=nops(y):if n1=2 and n2=2 then xx1:=x[1]*x[2]^5 : xx2:=x[2]*x[1]^5:yy1:=y[1]*y[2]^5: yy2:=y[2]*y[1]^5:if (xx1=n or xx2=n) and (yy1=n+1 or yy2=n+1) then printf("%a, ", n):else fi:fi:od:
  • Mathematica
    lst={}; Do[f1=FactorInteger[n]; If[Sort[Transpose[f1][[2]]]=={1, 5}, f2=FactorInteger[n+1]; If[Sort[Transpose[f2][[2]]]=={1, 5}, AppendTo[lst, n]]], {n, 3, 10^7}]; lst
    SequencePosition[Table[If[Sort[FactorInteger[n][[;;,2]]]=={1,5},1,0],{n,341*10^4}],{1,1}][[;;,1]] (* Harvey P. Dale, Nov 04 2023 *)
Showing 1-3 of 3 results.