cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A317790 a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*(n-5) + a(n-6) for n>5, a(0)=a(1)=1, a(2)=a(3)=7, a(4)=13, a(5)=19.

Original entry on oeis.org

1, 1, 7, 7, 13, 19, 31, 37, 49, 61, 79, 91, 109, 127, 151, 169, 193, 217, 247, 271, 301, 331, 367, 397, 433, 469, 511, 547, 589, 631, 679, 721, 769, 817, 871, 919, 973, 1027, 1087, 1141, 1201, 1261, 1327, 1387, 1453, 1519, 1591, 1657, 1729, 1801, 1879, 1951
Offset: 0

Views

Author

Paul Curtz, Aug 07 2018

Keywords

Comments

a(n) is b(2*n) in A215175.

Crossrefs

Cf. A003215, A059169, A131729 (reverse order), A215175.

Programs

  • Mathematica
    CoefficientList[Series[(1 - x + 6 x^2 - 6 x^3 + 5 x^4 + x^5)/((1 - x)^3*(1 + x) (1 + x^2)), {x, 0, 51}], x] (* Michael De Vlieger, Aug 07 2018 *)
    Table[(6 n^2 + 3 (3 - 2 (-1)^(n/2)) (1 + (-1)^n) + 2)/8, {n, 0, 60}] (* Bruno Berselli, Aug 08 2018 *)
  • PARI
    Vec((1 - x + 6*x^2 - 6*x^3 + 5*x^4 + x^5) / ((1 - x)^3*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Aug 07 2018

Formula

G.f.: (1 - x + 6*x^2 - 6*x^3 + 5*x^4 + x^5) / ((1 - x)^3*(1 + x)*(1 + x^2)). - Colin Barker, Aug 07 2018
a(n+1) = a(n) + 6*A059169(n+1).
a(2*k+1) = A003215(k).
From Bruno Berselli, Jul 08 2018: (Start)
a(2*k) = A016921(A000982(k)). More generally:
a(n) = (6*n^2 + 3*(3 - 2*(-1)^(n/2))*(1 + (-1)^n) + 2)/8. (End)

Extensions

Incorrect term 837 replaced with 817 by Colin Barker, Aug 07 2018
More terms from Colin Barker, Aug 07 2018
Showing 1-1 of 1 results.