A215198 Numbers n such that n and n + 1 are both of the form p*q^5 where p and q are distinct primes.
8991, 9375, 335583, 364256, 488672, 535328, 677727, 690848, 755487, 768608, 864351, 908576, 924128, 955232, 1097631, 1377567, 1424223, 1608416, 1688607, 1875231, 2121632, 2124063, 2168288, 2277152, 2541536, 2575071, 2621727, 2901663, 3190624, 3241376, 3409375
Offset: 1
Keywords
Examples
8991 is a member as 8991 = 37*3^5 and 8992 = 281*2^5.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory):for n from 3 to 10^7 do:x:=factorset(n):y:=factorset(n+1):n1:=nops(x):n2:=nops(y):if n1=2 and n2=2 then xx1:=x[1]*x[2]^5 : xx2:=x[2]*x[1]^5:yy1:=y[1]*y[2]^5: yy2:=y[2]*y[1]^5:if (xx1=n or xx2=n) and (yy1=n+1 or yy2=n+1) then printf("%a, ", n):else fi:fi:od:
-
Mathematica
lst={}; Do[f1=FactorInteger[n]; If[Sort[Transpose[f1][[2]]]=={1, 5}, f2=FactorInteger[n+1]; If[Sort[Transpose[f2][[2]]]=={1, 5}, AppendTo[lst, n]]], {n, 3, 10^7}]; lst SequencePosition[Table[If[Sort[FactorInteger[n][[;;,2]]]=={1,5},1,0],{n,341*10^4}],{1,1}][[;;,1]] (* Harvey P. Dale, Nov 04 2023 *)
Comments