cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215198 Numbers n such that n and n + 1 are both of the form p*q^5 where p and q are distinct primes.

Original entry on oeis.org

8991, 9375, 335583, 364256, 488672, 535328, 677727, 690848, 755487, 768608, 864351, 908576, 924128, 955232, 1097631, 1377567, 1424223, 1608416, 1688607, 1875231, 2121632, 2124063, 2168288, 2277152, 2541536, 2575071, 2621727, 2901663, 3190624, 3241376, 3409375
Offset: 1

Views

Author

Michel Lagneau, Aug 05 2012

Keywords

Comments

The smaller of adjacent values in A178740. - R. J. Mathar, Aug 08 2012

Examples

			8991 is a member as 8991 = 37*3^5 and 8992 = 281*2^5.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 3 to 10^7 do:x:=factorset(n):y:=factorset(n+1):n1:=nops(x):n2:=nops(y):if n1=2 and n2=2 then xx1:=x[1]*x[2]^5 : xx2:=x[2]*x[1]^5:yy1:=y[1]*y[2]^5: yy2:=y[2]*y[1]^5:if (xx1=n or xx2=n) and (yy1=n+1 or yy2=n+1) then printf("%a, ", n):else fi:fi:od:
  • Mathematica
    lst={}; Do[f1=FactorInteger[n]; If[Sort[Transpose[f1][[2]]]=={1, 5}, f2=FactorInteger[n+1]; If[Sort[Transpose[f2][[2]]]=={1, 5}, AppendTo[lst, n]]], {n, 3, 10^7}]; lst
    SequencePosition[Table[If[Sort[FactorInteger[n][[;;,2]]]=={1,5},1,0],{n,341*10^4}],{1,1}][[;;,1]] (* Harvey P. Dale, Nov 04 2023 *)