cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215202 Irregular triangle in which n-th row gives m in 1, ..., n-1 such that m^2 == m (mod n).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 4, 1, 1, 1, 1, 5, 6, 1, 1, 4, 9, 1, 1, 7, 8, 1, 6, 10, 1, 1, 1, 9, 10, 1, 1, 5, 16, 1, 7, 15, 1, 11, 12, 1, 1, 9, 16, 1, 1, 13, 14, 1, 1, 8, 21, 1, 1, 6, 10, 15, 16, 21, 25, 1, 1, 1, 12, 22, 1, 17, 18, 1, 15, 21, 1, 9, 28, 1, 1, 19, 20, 1, 13
Offset: 2

Views

Author

Eric M. Schmidt, Aug 05 2012

Keywords

Comments

The n-th row has length A034444(n) - 1.
If m appears in row n, then gcd(n,m) appears in the n-th row of A077610. Moreover, if m', distinct from m, also appears in row n, then gcd(n, m) does not equal gcd(n, m').
For odd n and any integer m, m^2 == m (mod n) iff m^2 == m (mod 2n).
Let P(1)={1} and for integers x > 1, let P(x) be the set of distinct prime divisors of x. We can define an equivalence relation ~ on the set of elements in the ring (Z_n, +mod n,*mod n): for all a,b in Z_n (where a,b are the least nonnegative residues modulo n) a ~ b iff P(gcd(a,n)) intersect P(n) is equal to P(gcd(b,n)) intersect P(n). If we include 0 in each row then these elements can represent the equivalence classes. They form a commutative monoid. - Geoffrey Critzer, Feb 13 2016

Examples

			Triangle begins:
1;
1;
1;
1;
1, 3, 4;
1;
1;
1;
1, 5, 6;
1;
1, 4, 9;
1;
1, 7, 8;
1, 6, 10;
1;
1;
1, 9, 10; etc.  - _Bruno Berselli_, Aug 06 2012
		

Crossrefs

For m^2 == m (mod n), see: n=2: A001477; n=3: A032766; n=4: A042948; n=5: A008851; n=6: A032766; n=7: A047274; n=8: A047393; n=9: A090570; n=10: A008851; n=11: A112651; n=12: A112652; n=13: A112653; n=14: A047274; n=15: A151972; n=16: A151977; n=17: A151978; n=18: A090570; n=19: A151979; n=20: A151980; n=21: A151971; n=22: A112651; n=24: A151973; n=26: A112653; n=30: A151972; n=32: A151983; n=34: A151978; n=38: A151979; n=42: A151971; n=48: A151981; n=64: A151984; n=100: A008852; n=1000: A008853.

Programs

  • Magma
    [m: m in [1..n-1], n in [2..40] | m^2 mod n eq m]; // Bruno Berselli, Aug 06 2012
  • Mathematica
    Table[Select[Range[n], Mod[#^2, n] == # &], {n, 2, 30}] // Grid (* Geoffrey Critzer, May 26 2015 *)
  • Sage
    def A215202(n) : return [m for m in range(1, n) if m^2 % n == m];