cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215221 Number of solutions to p(n) = Sum_{i=1..n-1} c(i)*p(i) with c(i) in {-1,0,1} and p(n) = n-th prime.

Original entry on oeis.org

0, 0, 1, 1, 1, 5, 11, 28, 69, 164, 437, 1104, 2887, 7778, 20861, 55610, 148857, 408694, 1112103, 3059571, 8519916, 23586160, 65766961, 183122954, 508287720, 1423807763, 4019399991, 11359914488, 32294035715, 91866217942, 258134484981, 732226048291
Offset: 1

Views

Author

Alois P. Heinz, Aug 06 2012

Keywords

Examples

			a(3) = 1: prime(3) = 5 = 3+2.
a(4) = 1: prime(4) = 7 = 5+2.
a(5) = 1: prime(5) = 11 = 7+5-3+2.
a(6) = 5: prime(6) = 13 = 7+5+3-2 = 11+2 = 11+5-3 = 11+7-3-2 = 11+7-5.
a(7) = 11: prime(7) = 17 = 7+5+3+2 = 11+5+3-2 = 11+7-3+2 = 13+5-3+2 = 13+7-3 = 13+7-5+2 = 13-11+7+5+3 = 13+11-5-2 = 13+11-7 = 13+11-7-5+3+2 = 13+11-7+5-3-2.
		

Crossrefs

Programs

  • Maple
    sp:= proc(n) option remember; `if`(n=0, 0, ithprime(n)+sp(n-1)) end:
    b := proc(n, i) option remember; `if`(n>sp(i), 0, `if`(i=0, 1,
            b(n, i-1)+ b(n+ithprime(i), i-1)+ b(abs(n-ithprime(i)), i-1)))
         end:
    a:= n-> b(ithprime(n), n-1):
    seq(a(n), n=1..40);
  • Mathematica
    nmax = 40; d = {1}; a1 = {};
    Do[
      p = Prime[n];
      i = Ceiling[Length[d]/2] + p;
      AppendTo[a1, If[i > Length[d], 0, d[[i]]]];
      d = PadLeft[d, Length[d] + 2 p] + PadRight[d, Length[d] + 2 p] +
        PadLeft[PadRight[d, Length[d] + p], Length[d] + 2 p];
      , {n, nmax}];
    a1 (* Ray Chandler, Mar 11 2014 *)

Formula

a(n) = A215222(A000040(n)).