cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215232 Least semiprime m such that the next semiprime is m + A215231(n).

Original entry on oeis.org

4, 6, 10, 15, 26, 95, 597, 1418, 2681, 6559, 16053, 17965, 32777, 35103, 35981, 340894, 1069541, 1589662, 3586843, 5835191, 139139887, 251306317, 285074689, 327023206, 751411951, 981270902, 2655397631, 5238280946, 6498130361, 8512915573, 16328958619
Offset: 1

Views

Author

T. D. Noe, Aug 07 2012

Keywords

Comments

The semiprime m + A215231(n) is in A217851.
Matomäki & Teräväinen prove that there is almost always (in the sense of natural density) a semiprime in (x, x + log(x)^2.1]. Under RH the exponent can be chosen as 2 + e for any e > 0. - Charles R Greathouse IV, Oct 03 2022

Crossrefs

Cf. A001358 (semiprimes), A131109, A215231, A217851.
Cf. A002386 (increasing gaps between primes).

Programs

  • Mathematica
    SemiPrimeQ[n_Integer] := If[Abs[n] < 2, False, (2 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; nextSemiprime[n_] := Module[{m = n + 1}, While[! SemiPrimeQ[m], m++]; m]; t = {{0, 0}}; s1 = nextSemiprime[1]; While[s1 < 10^7, s2 = nextSemiprime[s1]; d = s2 - s1; If[d > t[[-1, 1]], AppendTo[t, {d, s1}]; Print[{d, s1}]]; s1 = s2]; t = Rest[t]; Transpose[t][[2]]
  • PARI
    r=0;s=2;for(n=3,1e7,if(bigomega(n)==2,if(n-s>r,r=n-s;print1(s", "));s=n)) \\ Charles R Greathouse IV, Sep 07 2012

Extensions

a(27)-a(31) from Donovan Johnson, Aug 07 2012