cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215241 Unsigned matrix inverse of triangle A214398, as a triangle read by rows n >= 1.

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 18, 26, 9, 1, 172, 256, 99, 16, 1, 2313, 3489, 1416, 264, 25, 1, 40626, 61696, 25650, 5120, 575, 36, 1, 887326, 1352518, 569772, 117980, 14450, 1098, 49, 1, 23282964, 35566368, 15099042, 3193728, 410850, 34608, 1911, 64, 1, 715540140, 1094499820, 466865280, 100049120, 13259705, 1186857, 73696, 3104, 81, 1
Offset: 1

Views

Author

Paul D. Hanna, Aug 06 2012

Keywords

Examples

			Triangle begins:
         1;
         1,        1;
         3,        4,        1;
        18,       26,        9,       1;
       172,      256,       99,      16,      1;
      2313,     3489,     1416,     264,     25,     1;
     40626,    61696,    25650,    5120,    575,    36,    1;
    887326,  1352518,   569772,  117980,  14450,  1098,   49,  1;
  23282964, 35566368, 15099042, 3193728, 410850, 34608, 1911, 64, 1;
  ...
The matrix inverse is a signed version of triangle A214398:
   1;
  -1,   1;
   1,  -4,     1;
  -1,  10,    -9,    1;
   1, -20,    45,  -16,     1;
  -1,  35,  -165,  136,   -25,   1;
   1, -56,   495, -816,   325, -36,   1;
  -1,  84, -1287, 3876, -2925, 666, -49, 1; ...
in which the g.f. of column k is 1/(1+x)^(k^2) for k >= 1.
ILLUSTRATE G.F. OF COLUMNS:
k=1: 1 = 1/(1+x) + 1*x/(1+x)^4 + 3*x^2/(1+x)^9 + 18*x^3/(1+x)^16 + 172*x^4/(1+x)^25 + 2313*x^5/(1+x)^36 + 40626*x^6/(1+x)^49 + ...
k=2: 1 = 1/(1+x)^4 + 4*x/(1+x)^9 + 26*x^2/(1+x)^16 + 256*x^3/(1+x)^25 + 3489*x^4/(1+x)^36 + 61696*x^5/(1+x)^49 + ...
k=3: 1 = 1/(1+x)^9 + 9*x/(1+x)^16 + 99*x^2/(1+x)^25 + 1416*x^3/(1+x)^36 + 25650*x^4/(1+x)^49 + ...
k=4: 1 = 1/(1+x)^16 + 16*x/(1+x)^25 + 264*x^2/(1+x)^36 + 5120*x^3/(1+x)^49 + ...
		

Crossrefs

Cf. A177447 (column 1), A215242 (column 2), A215243 (column 3); A133316 (row sums).
Cf. A214398 (unsigned matrix inverse).

Programs

  • Mathematica
    T[n_, k_] := Module[{M}, M = Table[Binomial[c^2 + r - c - 1, r - c], {r, 1, n}, {c, 1, n}]; (-1)^(n - k) Inverse[M][[n, k]]];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 05 2023, after PARI program *)
  • PARI
    {T(n, k)=local(M=matrix(n,n,r,c,binomial(c^2+r-c-1, r-c)));(-1)^(n-k)*(M^-1)[n,k]}
    for(n=1, 12, for(k=1, n, print1(T(n, k), ", ")); print(""))

Formula

G.f.: x*y/(1-x*y) = Sum_{n>=1} Sum_{k=1..n} T(n,k)*x^n*y^k/(1+x)^(n^2).
G.f. of column k: 1 = Sum_{n>=k} T(n,k)*x^(n-k)/(1+x)^(n^2).
Column 1 forms A177447.
Row sums form A133316.