A215242 G.f.: 1 = Sum_{n>=0} a(n)*x^n/(1+x)^((n+2)^2).
1, 4, 26, 256, 3489, 61696, 1352518, 35566368, 1094499820, 38670814348, 1545160614694, 68970980789472, 3404652821768232, 184295822142051600, 10861040169788302030, 692560292664515634112, 47527552597795293035916, 3493783983256399634130360, 273974326317024551368217200
Offset: 0
Keywords
Examples
G.f.: 1 = 1/(1+x)^4 + 4*x/(1+x)^9 + 26*x^2/(1+x)^16 + 256*x^3/(1+x)^25 + 3489*x^4/(1+x)^36 + 61696*x^5/(1+x)^49 +... Also forms the final terms in rows of the triangle where row n+1 equals the partial sums of row n with the final term repeated 2*n+1 times, starting with '[1,1,1,1]' in row 1, as illustrated by: 1, 1, 1, 1; 1, 2, 3, 4, 4, 4, 4, 4; 1, 3, 6, 10, 14, 18, 22, 26, 26, 26, 26, 26, 26, 26; 1, 4, 10, 20, 34, 52, 74, 100, 126, 152, 178, 204, 230, 256, 256, 256, 256, 256, 256, 256, 256, 256; 1, 5, 15, 35, 69, 121, 195, 295, 421, 573, 751, 955, 1185, 1441, 1697, 1953, 2209, 2465, 2721, 2977, 3233, 3489, 3489, 3489, 3489, 3489, 3489, 3489, 3489, 3489; ...
Programs
-
PARI
{a(n)=if(n==0,1,polcoeff(1-sum(k=0, n-1, a(k)*x^k/(1+x+x*O(x^n))^((k+2)^2)), n))} for(n=0,21,print1(a(n)", "))
Comments