A215247 A Beatty sequence: a(n) = floor((n-1/2)*(2 + 2*sqrt(2))).
2, 7, 12, 16, 21, 26, 31, 36, 41, 45, 50, 55, 60, 65, 70, 74, 79, 84, 89, 94, 98, 103, 108, 113, 118, 123, 127, 132, 137, 142, 147, 152, 156, 161, 166, 171, 176, 181, 185, 190, 195, 200, 205, 210, 214, 219, 224, 229, 234, 239, 243, 248, 253, 258, 263, 267, 272, 277, 282, 287, 292, 296, 301, 306
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- J. N. Cooper and A. W. N. Riasanovsky, On the Reciprocal of the Binary Generating Function for the Sum of Divisors, 2012; J. Int. Seq. 16 (2013) #13.1.8
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
- Index entries for sequences related to Beatty sequences
Crossrefs
Bisection of A003151.
Programs
-
Magma
[Floor((2*n - 1)*(1 + Sqrt(2))): n in [1..100]] // G. C. Greubel, Oct 05 2018
-
Maple
seq(floor((n-1/2)*(2+2*sqrt(2))),n=1..70); # Muniru A Asiru, Oct 07 2018
-
Mathematica
Table[Floor[(2*n - 1)*(1 + Sqrt[2])], {n, 1, 100}] (* G. C. Greubel, Oct 05 2018 *)
-
PARI
vector(100, n, floor((2*n - 1)*(1 + sqrt(2)))) \\ G. C. Greubel, Oct 05 2018
-
Sage
[floor((n-1/2)*(2+2*sqrt(2))) for n in range(1, 65)]