cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215294 Number of permutations of 0..floor((n*3-2)/2) on odd squares of an n X 3 array such that each row and column of odd squares is increasing.

Original entry on oeis.org

1, 3, 6, 30, 70, 420, 1050, 6930, 18018, 126126, 336336, 2450448, 6651216, 49884120, 137181330, 1051723530, 2921454250, 22787343150, 63804560820, 504636071940, 1422156202740, 11377249621920, 32235540595440, 260363981732400
Offset: 1

Views

Author

R. H. Hardin, Aug 07 2012

Keywords

Comments

a(n) is number of symmetric standard Young tableaux of shape (n,n,n). - Ran Pan, May 21 2015

Examples

			Some solutions for n=5:
  x 1 x   x 0 x   x 0 x   x 4 x   x 0 x   x 1 x   x 1 x
  0 x 5   2 x 4   2 x 5   0 x 2   1 x 2   0 x 5   0 x 3
  x 3 x   x 1 x   x 1 x   x 5 x   x 3 x   x 2 x   x 2 x
  2 x 6   3 x 6   3 x 6   1 x 3   4 x 6   3 x 6   4 x 5
  x 4 x   x 5 x   x 4 x   x 6 x   x 5 x   x 4 x   x 6 x
		

Crossrefs

Column 3 of A215297.
Cf. A060693.

Programs

  • Maple
    a := n -> `if`(irem(n, 2) = 0, ((1/2)*n+1)*factorial((3/2)*n)/ (factorial((1/2)*n+1)^2*factorial((1/2)*n)), factorial((3/2)*n+3/2)/ (factorial((1/2)*n+1/2)^3*((9/2)*n+3/2))): # Peter Luschny, Sep 30 2018

Formula

a(n) = A060854(1,f3)*A060854(2,f4)*binomial(1*f3+2*f4,1*f3) where f3 = floor((n+1)/2), f4 = floor(n/2).
a(n) = e(n) if n even otherwise o(n), where e(n) = 6*Gamma((3*n)/2)/((2 + n)*Gamma(1 + n/2)^2*Gamma(n/2)) and o(n) = (1 + n)*Gamma(1/2 + (3*n)/2)/(2*Gamma((3 + n)/2)^3). - Peter Luschny, Sep 30 2018