A215294 Number of permutations of 0..floor((n*3-2)/2) on odd squares of an n X 3 array such that each row and column of odd squares is increasing.
1, 3, 6, 30, 70, 420, 1050, 6930, 18018, 126126, 336336, 2450448, 6651216, 49884120, 137181330, 1051723530, 2921454250, 22787343150, 63804560820, 504636071940, 1422156202740, 11377249621920, 32235540595440, 260363981732400
Offset: 1
Keywords
Examples
Some solutions for n=5: x 1 x x 0 x x 0 x x 4 x x 0 x x 1 x x 1 x 0 x 5 2 x 4 2 x 5 0 x 2 1 x 2 0 x 5 0 x 3 x 3 x x 1 x x 1 x x 5 x x 3 x x 2 x x 2 x 2 x 6 3 x 6 3 x 6 1 x 3 4 x 6 3 x 6 4 x 5 x 4 x x 5 x x 4 x x 6 x x 5 x x 4 x x 6 x
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Ran Pan, Problem 4, Project P.
Programs
-
Maple
a := n -> `if`(irem(n, 2) = 0, ((1/2)*n+1)*factorial((3/2)*n)/ (factorial((1/2)*n+1)^2*factorial((1/2)*n)), factorial((3/2)*n+3/2)/ (factorial((1/2)*n+1/2)^3*((9/2)*n+3/2))): # Peter Luschny, Sep 30 2018
Formula
a(n) = A060854(1,f3)*A060854(2,f4)*binomial(1*f3+2*f4,1*f3) where f3 = floor((n+1)/2), f4 = floor(n/2).
a(n) = e(n) if n even otherwise o(n), where e(n) = 6*Gamma((3*n)/2)/((2 + n)*Gamma(1 + n/2)^2*Gamma(n/2)) and o(n) = (1 + n)*Gamma(1/2 + (3*n)/2)/(2*Gamma((3 + n)/2)^3). - Peter Luschny, Sep 30 2018
Comments