cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215340 Expansion of series_reversion( x/(1 + sum(k>=1, x^A032766(k)) ) ) / x.

Original entry on oeis.org

1, 1, 1, 2, 6, 16, 40, 107, 307, 893, 2597, 7646, 22878, 69162, 210402, 644098, 1984598, 6149428, 19143220, 59840692, 187781992, 591343894, 1868106990, 5918537492, 18800935948, 59869902152, 191081899648, 611138052146, 1958410654202, 6287175115130, 20218209139666, 65120537016867
Offset: 0

Views

Author

Joerg Arndt, Aug 19 2012

Keywords

Comments

Number of Dyck n-paths avoiding ascents of length == 2 mod 3, see example. - David Scambler, Apr 16 2013
This is a special case of the following: let S be a set of positive numbers, r(x) = x/(1 + sum(e in S, x^e)), and f(x)=series_reversion(r(x)) / x, then f is the g.f. for the number of Dyck words of semilength n with substrings UUU...UU only of lengths e in S (that is, all ascent lengths are in S). [Joerg Arndt, Apr 16 2013]

Examples

			The 16 Dyck words of semilength 5 without substrings UUU..UU of length 2, 5, 8, etc. (using '1' for U and '.' for D) are
01:   1.1.1.1.1.
02:   1.1.111...
03:   1.111...1.
04:   1.111..1..
05:   1.111.1...
06:   1.1111....
07:   111...1.1.
08:   111..1..1.
09:   111..1.1..
10:   111.1...1.
11:   111.1..1..
12:   111.1.1...
13:   1111....1.
14:   1111...1..
15:   1111..1...
16:   1111.1....
- _Joerg Arndt_, Apr 16 2013
		

Crossrefs

Cf. A215341.

Programs

  • Maple
    b:= proc(x, y, t) option remember;
          `if`(y0 and t<>2, b(x-1, y, 0), 0)+b(x, y-1, irem(t+1, 3))))
        end:
    a:= n-> b(n, n, 0):
    seq(a(n), n=0..40);  # Alois P. Heinz, Apr 16 2013
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y0 && t != 2, b[x-1, y, 0], 0] + b[x, y-1, Mod[t+1, 3]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 08 2015, after Alois P. Heinz *)
  • PARI
    N = 66;  x = 'x + O('x^N);
    rf = x/(1+sum(n=1, N, ((n%3)!=2)*x^n ) );
    gf = serreverse(rf)/x;
    v = Vec(gf)

Formula

G.f. A(x) satisfies 0 = -x^3*A(x)^4 + (-x + 1)*A(x) - 1. [Joerg Arndt, Mar 01 2014]
Recurrence: 27*(n-1)*n*(n+1)*(2*n-5)*(4*n-11)*(4*n-7)*a(n) = 9*(n-1)*n*(4*n-11)*(96*n^3 - 456*n^2 + 616*n - 197)*a(n-1) - 3*(n-1)*(1728*n^5 - 15552*n^4 + 53164*n^3 - 85322*n^2 + 63369*n - 17010)*a(n-2) + (4*n-9)*(4*n-3)*(728*n^4 - 6188*n^3 + 19267*n^2 - 25987*n + 12810)*a(n-3) - 3*(n-3)*(2*n-3)*(3*n-10)*(3*n-8)*(4*n-7)*(4*n-3)*a(n-4). - Vaclav Kotesovec, Mar 22 2014
a(n) ~ sqrt(2*(3+r)/(3*(1-r)^3)) / (3*sqrt(Pi)*n^(3/2)*r^n), where r = 0.295932936709444136... is the root of the equation 27*(1-r)^4 = 256*r^3. - Vaclav Kotesovec, Mar 22 2014
a(n) = 1/(n + 1)*Sum_{k = 0..floor(n/3)} binomial(n + 1, n - 3*k)*binomial(n + k, n). - Peter Bala, Aug 02 2016

Extensions

Modified definition to obtain offset 0 for combinatorial interpretation, Joerg Arndt, Apr 16 2013