A215340 Expansion of series_reversion( x/(1 + sum(k>=1, x^A032766(k)) ) ) / x.
1, 1, 1, 2, 6, 16, 40, 107, 307, 893, 2597, 7646, 22878, 69162, 210402, 644098, 1984598, 6149428, 19143220, 59840692, 187781992, 591343894, 1868106990, 5918537492, 18800935948, 59869902152, 191081899648, 611138052146, 1958410654202, 6287175115130, 20218209139666, 65120537016867
Offset: 0
Examples
The 16 Dyck words of semilength 5 without substrings UUU..UU of length 2, 5, 8, etc. (using '1' for U and '.' for D) are 01: 1.1.1.1.1. 02: 1.1.111... 03: 1.111...1. 04: 1.111..1.. 05: 1.111.1... 06: 1.1111.... 07: 111...1.1. 08: 111..1..1. 09: 111..1.1.. 10: 111.1...1. 11: 111.1..1.. 12: 111.1.1... 13: 1111....1. 14: 1111...1.. 15: 1111..1... 16: 1111.1.... - _Joerg Arndt_, Apr 16 2013
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..750
Crossrefs
Cf. A215341.
Programs
-
Maple
b:= proc(x, y, t) option remember; `if`(y
0 and t<>2, b(x-1, y, 0), 0)+b(x, y-1, irem(t+1, 3)))) end: a:= n-> b(n, n, 0): seq(a(n), n=0..40); # Alois P. Heinz, Apr 16 2013 -
Mathematica
b[x_, y_, t_] := b[x, y, t] = If[y
0 && t != 2, b[x-1, y, 0], 0] + b[x, y-1, Mod[t+1, 3]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 08 2015, after Alois P. Heinz *) -
PARI
N = 66; x = 'x + O('x^N); rf = x/(1+sum(n=1, N, ((n%3)!=2)*x^n ) ); gf = serreverse(rf)/x; v = Vec(gf)
Formula
G.f. A(x) satisfies 0 = -x^3*A(x)^4 + (-x + 1)*A(x) - 1. [Joerg Arndt, Mar 01 2014]
Recurrence: 27*(n-1)*n*(n+1)*(2*n-5)*(4*n-11)*(4*n-7)*a(n) = 9*(n-1)*n*(4*n-11)*(96*n^3 - 456*n^2 + 616*n - 197)*a(n-1) - 3*(n-1)*(1728*n^5 - 15552*n^4 + 53164*n^3 - 85322*n^2 + 63369*n - 17010)*a(n-2) + (4*n-9)*(4*n-3)*(728*n^4 - 6188*n^3 + 19267*n^2 - 25987*n + 12810)*a(n-3) - 3*(n-3)*(2*n-3)*(3*n-10)*(3*n-8)*(4*n-7)*(4*n-3)*a(n-4). - Vaclav Kotesovec, Mar 22 2014
a(n) ~ sqrt(2*(3+r)/(3*(1-r)^3)) / (3*sqrt(Pi)*n^(3/2)*r^n), where r = 0.295932936709444136... is the root of the equation 27*(1-r)^4 = 256*r^3. - Vaclav Kotesovec, Mar 22 2014
a(n) = 1/(n + 1)*Sum_{k = 0..floor(n/3)} binomial(n + 1, n - 3*k)*binomial(n + k, n). - Peter Bala, Aug 02 2016
Extensions
Modified definition to obtain offset 0 for combinatorial interpretation, Joerg Arndt, Apr 16 2013
Comments