A215348 Expansion of q * phi(q) * psi(q^8) / (phi(-q) * phi(q^4)) in powers of q where phi(), psi() are Ramanujan theta functions.
1, 4, 8, 16, 30, 48, 80, 128, 197, 312, 472, 704, 1046, 1504, 2160, 3072, 4306, 6036, 8360, 11488, 15712, 21264, 28656, 38400, 51127, 67864, 89552, 117632, 153926, 200352, 259904, 335872, 432336, 554952, 709728, 904784, 1150142, 1457136, 1841200, 2320128
Offset: 1
Keywords
Examples
q + 4*q^2 + 8*q^3 + 16*q^4 + 30*q^5 + 48*q^6 + 80*q^7 + 128*q^8 + 197*q^9 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], 2015-2016.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
nmax=60; CoefficientList[Series[Product[((1+x^k)^3 * (1-x^k) * (1+x^(8*k))^2 / (1-x^(8*k)))^2,{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 13 2015 *) a[n_]:= SeriesCoefficient[EllipticTheta[3, 0, q]*EllipticTheta[2, 0, q^4]/(2*EllipticTheta[3, 0, -q]*EllipticTheta[3, 0, q^4]), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Dec 07 2017 *)
-
PARI
{a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 * eta(x^16 + A)^2 / (eta(x + A)^2 * eta(x^8 + A)^3))^2, n))}
Formula
Expansion of q * (f(q) * f(-q^16) / (f(-q) * f(q^4)))^2 = q * (chi(-q^2) * chi(-q^4) / (chi(-q) * chi(-q^8))^2)^2 in powers of q where chi(), f() are Ramanujan theta functions.
Expansion of (eta(q^2)^3 * eta(q^16)^2 / (eta(q)^2 * eta(q^8)^3))^2 in powers of q.
Euler transform of period 16 sequence [ 4, -2, 4, -2, 4, -2, 4, 4, 4, -2, 4, -2, 4, -2, 4, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = (1/4) * g(t) where q = exp(2 Pi i t) and g() is g.f. for A215346.
a(n) ~ exp(sqrt(n)*Pi) / (8*sqrt(2)*n^(3/4)). - Vaclav Kotesovec, Oct 13 2015
Comments