cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215348 Expansion of q * phi(q) * psi(q^8) / (phi(-q) * phi(q^4)) in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 4, 8, 16, 30, 48, 80, 128, 197, 312, 472, 704, 1046, 1504, 2160, 3072, 4306, 6036, 8360, 11488, 15712, 21264, 28656, 38400, 51127, 67864, 89552, 117632, 153926, 200352, 259904, 335872, 432336, 554952, 709728, 904784, 1150142, 1457136, 1841200, 2320128
Offset: 1

Views

Author

Michael Somos, Aug 08 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			q + 4*q^2 + 8*q^3 + 16*q^4 + 30*q^5 + 48*q^6 + 80*q^7 + 128*q^8 + 197*q^9 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[((1+x^k)^3 * (1-x^k) * (1+x^(8*k))^2 / (1-x^(8*k)))^2,{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 13 2015 *)
    a[n_]:= SeriesCoefficient[EllipticTheta[3, 0, q]*EllipticTheta[2, 0, q^4]/(2*EllipticTheta[3, 0, -q]*EllipticTheta[3, 0, q^4]), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Dec 07 2017 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 * eta(x^16 + A)^2 / (eta(x + A)^2 * eta(x^8 + A)^3))^2, n))}

Formula

Expansion of q * (f(q) * f(-q^16) / (f(-q) * f(q^4)))^2 = q * (chi(-q^2) * chi(-q^4) / (chi(-q) * chi(-q^8))^2)^2 in powers of q where chi(), f() are Ramanujan theta functions.
Expansion of (eta(q^2)^3 * eta(q^16)^2 / (eta(q)^2 * eta(q^8)^3))^2 in powers of q.
Euler transform of period 16 sequence [ 4, -2, 4, -2, 4, -2, 4, 4, 4, -2, 4, -2, 4, -2, 4, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = (1/4) * g(t) where q = exp(2 Pi i t) and g() is g.f. for A215346.
a(n) = -(-1)^n * A215349(n). a(2*n) = 4 * A107035(n). Convolution inverse of A215346.
a(n) ~ exp(sqrt(n)*Pi) / (8*sqrt(2)*n^(3/4)). - Vaclav Kotesovec, Oct 13 2015