cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A215432 Numbers n such that n^256+(n+1)^256 is a prime.

Original entry on oeis.org

85, 86, 157, 190, 195, 421, 504, 539, 621, 895, 1018, 1159, 1314, 1463, 1482, 1538, 1959, 2036, 2368, 2537, 2618, 2651, 3085, 3148, 3205, 3230, 3347, 3370, 3807, 4061, 4089, 4448, 4641, 4697, 4723, 4851, 4945
Offset: 1

Views

Author

Vincenzo Librandi, Aug 31 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[5000], PrimeQ[#^256 + (# + 1)^256] &];

A215433 Numbers n such that n^512 + (n+1)^512 is a prime.

Original entry on oeis.org

59, 864, 1455, 1723, 2118, 2172, 2460, 2851, 2916, 2971, 3193, 3476, 3747, 3782, 3795
Offset: 1

Views

Author

Vincenzo Librandi, Aug 31 2012

Keywords

Crossrefs

Programs

A274234 Numbers n such that n^1024 + (n+1)^1024 is prime.

Original entry on oeis.org

1078, 2020, 2471, 3255, 4200, 5135, 5185, 6218, 6823, 7220, 8416, 9003, 9008, 9267, 9396, 9689, 10316, 11150, 11250, 11543, 11652, 12960, 14021, 14201, 16523, 16751, 17006, 17054, 17747, 17874, 18157, 18640, 18834, 20478, 20481, 20794, 21147, 22166, 22608, 22638, 24450, 24677, 24894, 25709
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jun 15 2016

Keywords

Comments

The first five terms are certified primes, according to: factordb/certoverview.php. The others are probable primes. - Lewis Baxter, Jan 05 2021

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n^1024 + (n+1)^1024)]
  • Mathematica
    Select[Range[1, 10000], PrimeQ[#^1024 + (#+1)^1024] &]
  • PARI
    for(n=1, 10000, if(isprime(n^1024 + (n+1)^1024), print1(n, ", ")))
    

A274235 Numbers n such that n^2048 + (n+1)^2048 is prime.

Original entry on oeis.org

754, 1289, 1368, 1813, 3159, 3280, 3301, 4976, 6204, 6283, 6723, 6904, 7141, 10246, 11417, 13268, 15456, 19428, 19683, 19698, 20298, 21484, 22543, 23702, 23815, 24747, 27010, 32319, 34133, 36201, 37030, 39438, 41292, 44472, 47623, 50198, 51031, 51370, 51521, 52628, 53073, 53309, 53767, 55911, 56630, 59424
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jun 15 2016

Keywords

Comments

The terms correspond only to probable primes.

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n^2048 + (n+1)^2048)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[#^2048 + (#+1)^2048] &]
  • PARI
    for(n=1, 10000, if(isprime(n^2048 + (n+1)^2048), print1(n, ", ")))
    

A274236 Numbers k such that k^4096 + (k+1)^4096 is prime.

Original entry on oeis.org

311, 2741, 3582, 5293, 6289, 12080, 14082, 16886, 17971, 19936, 21454, 21486, 26652, 26904, 28314, 34693, 35778, 36292, 40868, 43819, 46356, 46467, 49653, 53996, 57150, 58169, 64937, 67398, 77383, 82577, 86031, 86102, 87352, 87684, 89030, 93340, 95346, 97320, 98191, 111483, 113947, 118052, 125442, 125836, 126157, 127832, 130794
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jun 15 2016

Keywords

Comments

The terms correspond only to probable primes.

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n^4096 + (n+1)^4096)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[#^4096 + (#+1)^4096] &]
  • PARI
    for(n=1, 10000, if(isprime(n^4096 + (n+1)^4096), print1(n, ", ")))
    

A274237 Numbers k such that k^8192 + (k+1)^8192 is prime.

Original entry on oeis.org

3508, 5209, 13428, 15347, 16339, 17779, 22548, 37726, 40408
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jun 15 2016

Keywords

Comments

The terms correspond only to probable primes.

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n^8192 + (n+1)^8192)]
  • Mathematica
    Select[Range[1, 10000], PrimeQ[#^8192 + (#+1)^8192] &]
  • PARI
    for(n=1, 10000, if(isprime(n^8192 + (n+1)^8192), print1(n, ", ")))
    

A244950 Least number k > n such that k^128 + n^128 is prime.

Original entry on oeis.org

120, 113, 106, 259, 304, 85, 212, 135, 158, 47, 62, 985, 84, 47, 518, 485, 178, 169, 106, 27, 88, 139, 632, 47, 44, 643, 194, 209, 606, 1529, 32, 113, 1094, 139, 754, 647, 38, 45, 262, 69, 94, 631, 90, 527, 326, 195, 54, 277, 232, 187, 554, 189, 78, 799, 216, 131, 1132, 173
Offset: 1

Views

Author

Derek Orr, Jul 08 2014

Keywords

Comments

a(n) = n+1 iff n is in A215431.

Examples

			The n-value for which n^128 + 1 is prime (sequence A056994) is n = 120 (where n > 1 by definition). Thus a(1) = 120.
		

Crossrefs

Programs

  • Mathematica
    lnk[n_]:=Module[{k=n+1,n128=n^128},While[!PrimeQ[n128+k^128],k++];k]; Array[lnk,60] (* Harvey P. Dale, Apr 22 2018 *)
  • PARI
    a(n)=for(k=n+1,10^4,if(isprime(k^128+n^128),return(k)))
    n=1;while(n<100,print1(a(n),", ");n++)
  • Python
    import sympy
    from sympy import isprime
    def a(n):
        for k in range(n+1,10**4):
            if isprime(k**128+n**128):
                return k
    for n in range(1, 100):
        print(a(n), end=', ')
    
Showing 1-7 of 7 results.