A215917
a(n) = -3*a(n-1) + a(n-3), with a(0)=0, a(1)=6, and a(2)=-15.
Original entry on oeis.org
0, 6, -15, 45, -129, 372, -1071, 3084, -8880, 25569, -73623, 211989, -610398, 1757571, -5060724, 14571774, -41957751, 120812529, -347865813, 1001639688, -2884106535, 8304453792, -23911721688, 68851058529, -198248721795, 570834443697, -1643652272562
Offset: 0
- D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the ninth order, (submitted, 2012).
- R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math. (in press, 2012).
-
We have a(3) + 3*a(2) = 0, a(8) + 24*a(5) = 48 = a(3) + a(1)/2.
-
LinearRecurrence[{-3,0,1}, {0,6,-15}, 50]
-
concat(0,Vec(3*(x+2)/(1+3*x-x^3)+O(x^99))) \\ Charles R Greathouse IV, Oct 01 2012
A052545
Expansion of (1-x)^2/(1-3*x+x^3).
Original entry on oeis.org
1, 1, 4, 11, 32, 92, 265, 763, 2197, 6326, 18215, 52448, 151018, 434839, 1252069, 3605189, 10380728, 29890115, 86065156, 247814740, 713554105, 2054597159, 5915976737, 17034376106, 49048531159, 141229616740, 406654474114
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
a:=[1,1,4];; for n in [4..40] do a[n]:=3*a[n-1]-a[n-3]; od; a; # G. C. Greubel, May 08 2019
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x)^2/(1-3*x+x^3) )); // G. C. Greubel, May 08 2019
-
spec := [S,{S=Sequence(Prod(Z,Union(Z,Sequence(Z)),Sequence(Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
LinearRecurrence[{3,0,-1}, {1,1,4}, 40] (* G. C. Greubel, May 08 2019 *)
-
my(x='x+O('x^40)); Vec((1-x)^2/(1-3*x+x^3)) \\ G. C. Greubel, May 08 2019
-
TOP = 33
a = [1]*TOP
a[2]=4
for n in range(3,TOP):
print(a[n-3], end=',')
a[n] = 3*a[n-1] - a[n-3]
# Alex Ratushnyak, Aug 10 2012
-
((1-x)^2/(1-3*x+x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 08 2019
Showing 1-2 of 2 results.
Comments