A215540 Least k such that (2*n-1)*2^k + 1 is a prime factor of a Fermat number 2^(2^m) + 1 for some m, or 0 if no such value exists.
1, 41, 7, 14, 67, 18759, 20, 229, 147, 6838, 41
Offset: 1
Links
- Ray Ballinger and Wilfrid Keller, List of primes k.2^n + 1 for k < 300
- Fermat factoring status, Prime factors of Fermat numbers
- FermatSearch, Home page
- PrimeGrid, Announcement of 25*2^2141884+1, related to a(13).
- Eric Weisstein's World of Mathematics, Fermat Number
Programs
-
Mathematica
lst = {}; Do[k = 1; While[True, p = n*2^k + 1; If[PrimeQ[p] && IntegerQ@Log[2, MultiplicativeOrder[2, p]], AppendTo[lst, k]; Break[]]; k++], {n, 1, 9, 2}]; lst
Comments