cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215544 Number of standard Young tableaux of shape [4n,4].

Original entry on oeis.org

0, 14, 275, 1260, 3705, 8602, 17199, 31000, 51765, 81510, 122507, 177284, 248625, 339570, 453415, 593712, 764269, 969150, 1212675, 1499420, 1834217, 2222154, 2668575, 3179080, 3759525, 4416022, 5154939, 5982900, 6906785, 7933730, 9071127, 10326624, 11708125
Offset: 0

Views

Author

Alois P. Heinz, Aug 15 2012

Keywords

Comments

Also the number of binary words with 4n 1's and 4 0's such that for every prefix the number of 1's is >= the number of 0's. The a(1) = 14 words are: 10101010, 10101100, 10110010, 10110100, 10111000, 11001010, 11001100, 11010010, 11010100, 11011000, 11100010, 11100100, 11101000, 11110000.

Crossrefs

Row n=4 of A214776.

Programs

  • Maple
    a:= n-> max(0, (4*n+3)*(2*n+1)*(4*n-3)*(n+1)/3):
    seq(a(n), n=0..40);
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{0,14,275,1260,3705,8602},40] (* Harvey P. Dale, Jan 25 2024 *)
  • PARI
    a(n)=max((4*n-3)*(4*n+3)*(2*n+1)*(n+1)/3,0) \\ Charles R Greathouse IV, Oct 21 2022

Formula

G.f.: (3*x^4-15*x^3-25*x^2-205*x-14)*x/(x-1)^5.
a(n) = (4*n-3)*(4*n+3)*(2*n+1)*(n+1)/3 for n>0, a(0) = 0.
Sum_{n>=1} 1/a(n) = 31/105 - 17*Pi/35 + 66*log(2)/35. - Amiram Eldar, Aug 29 2025