A215574 Minimal sum s of n distinct squares such that s is divisible by n.
1, 10, 21, 84, 55, 156, 140, 240, 342, 470, 506, 864, 819, 1176, 1395, 1616, 1785, 2214, 2470, 3260, 3570, 4092, 4324, 5184, 5525, 6578, 7101, 8456, 8555, 9750, 10416, 11712, 13134, 14314, 14910, 16776, 17575, 19570, 21099, 22760, 23821, 26166, 27434, 30096
Offset: 1
Keywords
Examples
a(1) = 1 = 1^2 = 1*1. a(2) = 10 = 1^2 + 3^2 = 2*5. a(3) = 21 = 1^2 + 2^2 + 4^2 = 3*7. a(4) = 84 = 1^2 + 3^2 + 5^2 + 7^2 = 4*21. a(5) = 55 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 5*11.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..301
- Zak Seidov, Minimal sums and their n distinct summand squares for n = 1..25
Programs
-
Maple
b:= proc(n, i, t) option remember; local h; h:= t*(t+1)*(2*t+1)/6; i>=t and n>=h and (n=h or t>0 and (b(n, i-1, t) or i<=n and b(n-i^2, i-1, t-1))) end: a:= proc(n) local s; for s from n*ceil((n+1)*(2*n+1)/6) by n while not b(s, iroot(s, 2)+1, n) do od; s end: seq(a(n), n=1..50); # Alois P. Heinz, Aug 16 2012
-
Mathematica
$RecursionLimit = 2000; b[n_, i_, t_] := b[n, i, t] = Module[{h = t(t+1)(2t+1)/6}, i >= t && n >= h && (n==h || t>0 && (b[n, i-1, t] || i <= n && b[n-i^2, i-1, t-1]))]; a[n_] := Module[{s}, For[s = n Ceiling[(n+1)(2n+1)/6], !b[s, Floor @ Sqrt[s] + 1, n], s += n]; s]; Array[a, 50] (* Jean-François Alcover, Nov 22 2020, after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, Aug 16 2012
Comments