cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A215597 Expansion of psi(-x) * f(-x)^3 in powers of x where psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, -4, 3, 4, -2, 0, -11, 4, 0, 12, 10, -12, -7, -4, 0, -12, 16, 0, 6, 0, 9, 8, -10, 0, -18, -20, 0, 20, -14, 12, 11, 24, 0, 0, -22, 0, 16, -20, -6, -12, 0, 0, -3, 4, 0, -20, 48, 0, 14, 28, 0, -40, 0, 0, 0, -8, -33, -4, -26, 0, 30, 28, 0, 0, 2, 12, -16, 20, 0
Offset: 0

Views

Author

Michael Somos, Aug 16 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 - 4*x + 3*x^2 + 4*x^3 - 2*x^4 - 11*x^6 + 4*x^7 + 12*x^9 + 10*x^10 + ...
q - 4*q^5 + 3*q^9 + 4*q^13 - 2*q^17 - 11*q^25 + 4*q^29 + 12*q^37 + 10*q^41 + ...
		

Crossrefs

Programs

  • Mathematica
    A215597[n_] := SeriesCoefficient[(QPochhammer[x]^4 * QPochhammer[x^4])/ QPochhammer[x^2], {x, 0, n}]; Table[A215597[n], {n, 0, 50}] (* G. C. Greubel, Oct 01 2017 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^4 * eta(x^4 + A) / eta(x^2 + A), n))}

Formula

Expansion of q^(-1/4) * eta(q)^4 * eta(q^4) / eta(q^2) in powers of q.
Euler transform of period 4 sequence [ -4, -3, -4, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (128 t)) = 2^(19/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A215596.
a(n) = (-1)^floor( n/2 ) * b(4*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 * (-p)^(e/2) if p == 3 (mod 4),
Convolution of A106459 and A010816.

A215598 Expansion of phi(-x^2) * f(x)^3 in powers of x where phi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 3, -2, -11, 0, 10, -7, 0, 16, 6, 9, -10, -18, 0, -14, 11, 0, -22, 16, -6, 0, -3, 0, 48, 14, 0, 0, 0, -33, -26, 30, 0, 2, -16, 0, -10, -13, 0, -48, 26, 0, 0, 18, 0, 34, 19, 30, -16, 0, 0, -2, -6, 0, 22, -34, -21, 14, 42, 0, 0, -48, 0, 0, -80, 0, -22, -23, 0
Offset: 0

Views

Author

Michael Somos, Aug 16 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 3*x - 2*x^2 - 11*x^3 + 10*x^5 - 7*x^6 + 16*x^8 + 6*x^9 + 9*x^10 + ...
G.f. = q + 3*q^9 - 2*q^17 - 11*q^25 + 10*q^41 - 7*q^49 + 16*q^65 + 6*q^73 + 9*q^81 + ...
		

Crossrefs

Cf. A215596.

Programs

  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^11 / (eta(x + A)^3 * eta(x^4 + A)^4), n))};
    
  • PARI
    {a(n) = my(A, p, e, u, v, s, x, y, a0, a1); if( n<0, 0, n = n*8 + 1; A = factor(n); simplify( prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, s = p * kronecker( 2, p); if( p%4==3, if( e%2, 0, (-s)^(e/2)), if( p%8==1, for( y=1, sqrtint(p\16), if( issquare( p - 16*y^2, &u), v=y; if( u%4!=1, u=-u); break)); a0 = 1; a1 = x = 2 * u * (-1)^(u\4 + v)); if( p%8==5, forstep( y=1, sqrtint(p\4), 2, if( issquare( p - 4*y^2, &v), u=y; if( u%4!=1, u=-u); if( v%4!=1, v=-v); break)); a0 = 1; a1 = x = 4 * I * u * (-1)^(v\4)); for( i=2, e, y = x*a1 - s*a0; a0=a1; a1=y); a1)))))};

Formula

Expansion of q^(-1/8) * eta(q^2)^11 / (eta(q)^3 * eta(q^4)^4) in powers of q.
Euler transform of period 4 sequence [3, -8, 3, -4, ...].
a(n) = b(8*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(p^e) = b(p) * b(p^(e-1)) - Kronecker(2, p) * p * b(p^(e-2)). b(8*n + 5) = 4 * i * A215596(n).
Showing 1-2 of 2 results.