A215631 Triangle read by rows: T(n,k) = n^2 + n*k + k^2, 1 <= k <= n.
3, 7, 12, 13, 19, 27, 21, 28, 37, 48, 31, 39, 49, 61, 75, 43, 52, 63, 76, 91, 108, 57, 67, 79, 93, 109, 127, 147, 73, 84, 97, 112, 129, 148, 169, 192, 91, 103, 117, 133, 151, 171, 193, 217, 243, 111, 124, 139, 156, 175, 196, 219, 244, 271, 300, 133, 147, 163
Offset: 1
Examples
The triangle begins: row n T(n,k), 1 <= k <= n 1: 3 2: 7 12 3: 13 19 27 4: 21 28 37 48 5: 31 39 49 61 75 6: 43 52 63 76 91 108 7: 57 67 79 93 109 127 147 8: 73 84 97 112 129 148 169 192 9: 91 103 117 133 151 171 193 217 243 10: 111 124 139 156 175 196 219 244 271 300 11: 133 147 163 181 201 223 247 273 301 331 363 12: 157 172 189 208 229 252 277 304 333 364 397 432
Links
- Reinhard Zumkeller, Rows n = 1..120 of triangle, flattened
Programs
-
Haskell
a215631 n k = a215631_tabl !! (n-1) !! (k-1) a215631_row n = a215631_tabl !! (n-1) a215631_tabl = zipWith3 (zipWith3 (\u v w -> u + v + w)) a093995_tabl a075362_tabl a133819_tabl -- Reinhard Zumkeller, Nov 11 2012
-
Magma
[[i^2+i*j+j^2: j in [1..i]]: i in [1..10]]; // Vincenzo Librandi, Jun 07 2015
-
Maple
seq(seq(i^2+i*j+j^2, j=1..i),i=1..10); # Robert Israel, May 10 2015
-
Mathematica
Table[n^2 + n*k + k^2, {n, 11}, {k, n}] // Flatten (* Michael De Vlieger, May 12 2015 *)
-
PARI
for(n=1,15,for(k=1,n,print1(n^2+n*k+k^2,", "))) \\ Derek Orr, May 13 2015
Formula
G.f. for triangle: (3-2*x+3*x*y+x^2-11*x^2*y+4*x^3*y+x^3*y^2+x^4*y^2)*x*y/((1-x)^3*(1-x*y)^3). - Robert Israel, May 10 2015
From Avi Friedlich, May 26 2015: (Start)
T(k+1,k) = A003215(k).