cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215631 Triangle read by rows: T(n,k) = n^2 + n*k + k^2, 1 <= k <= n.

Original entry on oeis.org

3, 7, 12, 13, 19, 27, 21, 28, 37, 48, 31, 39, 49, 61, 75, 43, 52, 63, 76, 91, 108, 57, 67, 79, 93, 109, 127, 147, 73, 84, 97, 112, 129, 148, 169, 192, 91, 103, 117, 133, 151, 171, 193, 217, 243, 111, 124, 139, 156, 175, 196, 219, 244, 271, 300, 133, 147, 163
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 11 2012

Keywords

Examples

			The triangle begins:
row n   T(n,k), 1 <= k <= n
   1:     3
   2:     7   12
   3:    13   19   27
   4:    21   28   37   48
   5:    31   39   49   61   75
   6:    43   52   63   76   91  108
   7:    57   67   79   93  109  127  147
   8:    73   84   97  112  129  148  169  192
   9:    91  103  117  133  151  171  193  217  243
  10:   111  124  139  156  175  196  219  244  271  300
  11:   133  147  163  181  201  223  247  273  301  331  363
  12:   157  172  189  208  229  252  277  304  333  364  397  432
		

Crossrefs

Cf. A215646 (row sums), A002061 (left edge, shifted), A033428 (right edge), A003215.

Programs

  • Haskell
    a215631 n k = a215631_tabl !! (n-1) !! (k-1)
    a215631_row n = a215631_tabl !! (n-1)
    a215631_tabl = zipWith3 (zipWith3 (\u v w -> u + v + w))
                            a093995_tabl a075362_tabl a133819_tabl
    -- Reinhard Zumkeller, Nov 11 2012
    
  • Magma
    [[i^2+i*j+j^2: j in [1..i]]: i in [1..10]]; // Vincenzo Librandi, Jun 07 2015
  • Maple
    seq(seq(i^2+i*j+j^2, j=1..i),i=1..10); # Robert Israel, May 10 2015
  • Mathematica
    Table[n^2 + n*k + k^2, {n, 11}, {k, n}] // Flatten (* Michael De Vlieger, May 12 2015 *)
  • PARI
    for(n=1,15,for(k=1,n,print1(n^2+n*k+k^2,", "))) \\ Derek Orr, May 13 2015
    

Formula

T(n,k) = 2*A070216(n,k) - A215630(n,k).
G.f. for triangle: (3-2*x+3*x*y+x^2-11*x^2*y+4*x^3*y+x^3*y^2+x^4*y^2)*x*y/((1-x)^3*(1-x*y)^3). - Robert Israel, May 10 2015
From Avi Friedlich, May 26 2015: (Start)
T(n,k) = A093995(n,k) + A075362(n,k) + A133819(n,k).
T(k+1,k) = A003215(k).
T(k+2,k) = A003215(k)/2 + A003215(k+1)/2.
T(k+3,k) = A003215(k)/3 + A003215(k+1)/3 + A003215(k+2)/3 and so on. (End)