A215638 E.g.f.: Series_Reversion( x/(cos(x) + sin(x)) ).
1, 2, 3, -16, -255, -1824, 875, 279040, 5019777, 34163200, -822579021, -35005820928, -598199789759, 1612679634944, 456446015789595, 15087057004396544, 168732823928006145, -8490541860738957312, -560665092239473776157, -14661549133472721797120
Offset: 1
Keywords
Examples
E.g.f.: A(x) = x + 2*x^2/2! + 3*x^3/3! - 16*x^4/4! - 255*x^5/5! - 1824*x^6/6! +... where A(x/(cos(x) + sin(x))) = x and A(x) = x*(cos(A(x)) + sin(A(x))). Related expansions: cos(A(x)) = 1 - x^2/2! - 6*x^3/3! - 23*x^4/4! + 40*x^5/5! + 2159*x^6/6! + 26656*x^7/7! + 114577*x^8/8! +... sin(A(x)) = x + 2*x^2/2! + 2*x^3/3! - 28*x^4/4! - 344*x^5/5! - 2034*x^6/6! + 8224*x^7/7! + 443176*x^8/8! +...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..400
Programs
-
Mathematica
Rest[CoefficientList[InverseSeries[Series[x/(Sqrt[2]*Cos[Pi/4-x]),{x,0,20}],x],x]*Range[0,20]!] (* Vaclav Kotesovec, Jan 22 2014 *)
-
PARI
{a(n)=local(X=x+x^2*O(x^n)); n!*polcoeff(serreverse(x/(cos(X)+sin(X))), n)}
-
PARI
{a(n)=local(X=x+x^2*O(x^n)); n!*polcoeff(x*(cos(X)+sin(X))^n/n, n)}
-
PARI
{a(n)=local(A=x+x^2*O(x^n)); for(i=1,n,A=x*(cos(A)+sin(A)));n!*polcoeff(A, n)} for(n=1, 31, print1(a(n), ", "))
Formula
E.g.f. satisfies: A(x) = x * (cos(A(x)) + sin(A(x))).
a(n) = [x^n/n!] x*(cos(x)+sin(x))^n / n.
a(n) = n*A215639(n-1).
Comments