A215640 Sum of divisors of colossally abundant numbers.
3, 12, 28, 168, 360, 1170, 9360, 19344, 232128, 3249792, 6604416, 20321280, 104993280, 1889879040, 37797580800, 907141939200, 1828682956800, 54860488704000, 1755535638528000, 12508191424512000, 37837279059148800, 1437816604247654400, 60388297378401484800
Offset: 1
Keywords
Examples
6 is the second colossally abundant number. Divisors of 6 are 1, 2, 3, 6, so a(2) = 1 + 2 + 3 + 6 = 12.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..382 (terms 1..128 from Arkadiusz Wesolowski)
- Eric Weisstein's World of Mathematics, Riemann Hypothesis.
Programs
-
Mathematica
lst1 = {2}; lst2 = {}; maxN = 23; p = 1; pFactor[f_List] := Module[{p = f[[1]], k = f[[2]]}, N[Log[(p^(k + 2) - 1)/(p^(k + 1) - 1)]/Log[p]] - 1]; f = {{2, 1}, {3, 0}}; primes = 1; x = Table[pFactor[f[[i]]], {i, primes + 1}]; For[n = 2, n <= maxN, n++, i = Position[x, Max[x]][[1, 1]]; AppendTo[lst1, f[[i, 1]]]; f[[i, 2]]++; If[i > primes, primes++; AppendTo[f, {Prime[i + 1], 0}]; AppendTo[x, pFactor[f[[-1]]]]]; x[[i]] = pFactor[f[[i]]]]; Do[p = p*lst1[[n]]; AppendTo[lst2, DivisorSigma[1, p]], {n, maxN}]; lst2 (* Most of the code is from T. D. Noe *)