cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215642 Primes p such that there is no D such that p+D, p-D, p+2*D, p-2*D are all primes.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 19, 23, 31, 37, 41, 43, 47, 53, 59, 61, 73, 79, 83, 103, 107, 109, 113, 127, 137, 139, 149, 151, 157, 179, 181, 199, 223, 227, 229, 239, 251, 271, 277, 281, 293, 311, 331, 349, 353, 359, 367, 379, 383, 389, 397, 401, 409, 421, 431, 439, 487, 499, 541
Offset: 1

Views

Author

Alex Ratushnyak, Aug 18 2012

Keywords

Comments

Conjecture: a(243)=34613 is the last term.

Examples

			17 doesn't occur in the sequence, because there is D=6: 17-12, 17-6, 17+6 and 17+12 are all primes: 5, 11, 23, 29.
		

Crossrefs

Cf. A078611.

Programs

  • Mathematica
    fQ[p_] := Module[{d = 1}, While[4d < p && !(PrimeQ[p-4d] && PrimeQ[p-2d] && PrimeQ[p+2d] && PrimeQ[p+4d]), d++]; 4d > p]; Select[Prime[Range[4000]], fQ] (* T. D. Noe, Aug 20 2012 *)
  • PARI
    N=10^9;
    default(primelimit,N);
    print1(2,", ");
    { forprime (p=3, N,
        D=2;  D2 = D << 1;
        t = 1;
        while ( p > D2,
            if ( isprime(p+D) & isprime(p-D) &
                 isprime(p+D2) & isprime(p-D2)
            , /* then */
                t=0; break()
            );
            D += 2;  D2 += 4;
        );
        if ( t==1, print1(p,", ") );
    ); }
    /* Joerg Arndt, Aug 20 2012 */