A215652 Exponential Riordan array [exp(x*exp(-x)),x].
1, 1, 1, -1, 2, 1, -2, -3, 3, 1, 9, -8, -6, 4, 1, -4, 45, -20, -10, 5, 1, -95, -24, 135, -40, -15, 6, 1, 414, -665, -84, 315, -70, -21, 7, 1, 49, 3312, -2660, -224, 630, -112, -28, 8, 1, -10088, 441, 14904, -7980, -504, 1134, -168, -36, 9, 1
Offset: 0
Examples
Triangle begins .n\k.|....0.....1.....2.....3.....4.....5.....6.....7 = = = = = = = = = = = = = = = = = = = = = = = = = = = ..0..|....1 ..1..|....1.....1 ..2..|...-1.....2.....1 ..3..|...-2....-3.....3.....1 ..4..|....9....-8....-6.....4.....1 ..5..|...-4....45...-20...-10.....5.....1 ..6..|..-95...-24...135...-40...-15.....6.....1 ..7..|..414..-665...-84...315...-70...-21.....7.....1 ...
Links
- G. Helms, Pascalmatrix tetrated
Programs
-
Mathematica
max = 9; MapIndexed[ Take[#1, #2[[1]]]&, CoefficientList[ Series[ Exp[x*t]*Exp[x*Exp[-x]], {x, 0, max}, {t, 0, max}], {x, t}]*Range[0, max]!, 1] // Flatten (* Jean-François Alcover, Jan 08 2013 *)
Formula
T(n,k) = binomial(n,k)*A003725(n-k).
The triangle equals P^^Q, where P is Pascal's triangle and Q is the inverse of P. Column 0 equals A003725.
E.g.f.: exp(x*t)*exp(x*exp(-x)) = 1 + (1 + t)*x + (-1 + 2*t + t^2)*x^2/2! + (-2 - 3*t + 3*t^2 + t^3)*x^3/3! + ....
The infinitesimal generator for this triangle is the generalized exponential Riordan array [x*exp(-x),x], which factors as [x,x]*[exp(-x),x] = A132440*A007318^(-1). The infinitesimal generator begins
..0
..1....0
.-2....2....0
..3...-6....3....0
.-4...12..-12....4....0
This is a signed version of the triangle of denominators from Leibniz's harmonic triangle - see A003506.
Comments