cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A003506 Triangle of denominators in Leibniz's Harmonic Triangle a(n,k), n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 2, 2, 3, 6, 3, 4, 12, 12, 4, 5, 20, 30, 20, 5, 6, 30, 60, 60, 30, 6, 7, 42, 105, 140, 105, 42, 7, 8, 56, 168, 280, 280, 168, 56, 8, 9, 72, 252, 504, 630, 504, 252, 72, 9, 10, 90, 360, 840, 1260, 1260, 840, 360, 90, 10, 11, 110, 495, 1320, 2310, 2772, 2310, 1320, 495, 110, 11
Offset: 1

Views

Author

Keywords

Comments

Array 1/Beta(n,m) read by antidiagonals. - Michael Somos, Feb 05 2004
a(n,3) = A027480(n-2); a(n,4) = A033488(n-3). - Ross La Haye, Feb 13 2004
a(n,k) = total size of all of the elements of the family of k-size subsets of an n-element set. For example, a 2-element set, say, {1,2}, has 3 families of k-size subsets: one with 1 0-size element, one with 2 1-size elements and one with 1 2-size element; respectively, {{}}, {{1},{2}}, {{1,2}}. - Ross La Haye, Dec 31 2006
Second slice along the 1-2-plane in the cube a(m,n,o) = a(m-1,n,o) + a(m,n-1,o) + a(m,n,o-1) with a(1,0,0)=1 and a(m<>1=0,n>=0,0>=o)=0, for which the first slice is Pascal's triangle (slice read by antidiagonals). - Thomas Wieder, Aug 06 2006
Triangle, read by rows, given by [2,-1/2,1/2,0,0,0,0,0,0,...] DELTA [2,-1/2,1/2,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 07 2007
This sequence * [1/1, 1/2, 1/3, ...] = (1, 3, 7, 15, 31, ...). - Gary W. Adamson, Nov 14 2007
n-th row = coefficients of first derivative of corresponding Pascal's triangle row. Example: x^4 + 4x^3 + 6x^2 + 4x + 1 becomes (4, 12, 12, 4). - Gary W. Adamson, Dec 27 2007
From Paul Curtz, Jun 03 2011: (Start)
Consider
1 1/2 1/3 1/4 1/5
-1/2 -1/6 -1/12 -1/20 -1/30
1/3 1/12 1/30 1/60 1/105
-1/4 -1/20 -1/60 -1/140 -1/280
1/5 1/30 1/105 1/280 1/630
This is an autosequence (the inverse binomial transform is the sequence signed) of the second kind: the main diagonal is 2 times the first upper diagonal.
Note that 2, 12, 60, ... = A005430(n+1), Apery numbers = 2*A002457(n). (End)
From Louis Conover (for the 9th grade G1c mathematics class at the Chengdu Confucius International School), Mar 02 2015: (Start)
The i-th order differences of n^-1 appear in the (i+1)th row.
1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, ...
1/2, 1/6, 1/12, 1/20, 1/30, 1/42, 1/56, 1/72, ...
1/3, 1/12, 1/30, 1/60, 1/105, 1/168, 1/252, 1/360, ...
1/4, 1/20, 1/60, 1/140, 1/280, 1/504, 1/840, 1/1320, ...
1/5, 1/30, 1/105, 1/280, 1/630, 1/1260, 1/2310, 1/3960, ...
1/6, 1/42, 1/168, 1/504, 1/1260, 1/2772, 1/5544, 1/12012, ...
(End)
T(n,k) is the number of edges of distance k from a fixed vertex in the n-dimensional hypercube. - Simon Burton, Nov 04 2022

Examples

			The triangle begins:
  1;
  1/2, 1/2;
  1/3, 1/6, 1/3;
  1/4, 1/12, 1/12, 1/4;
  1/5, 1/20, 1/30, 1/20, 1/5;
  ...
The triangle of denominators begins:
   1
   2   2
   3   6   3
   4  12  12    4
   5  20  30   20    5
   6  30  60   60   30    6
   7  42 105  140  105   42    7
   8  56 168  280  280  168   56    8
   9  72 252  504  630  504  252   72   9
  10  90 360  840 1260 1260  840  360  90  10
  11 110 495 1320 2310 2772 2310 1320 495 110 11
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, see 130.
  • B. A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8. English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 38.
  • G. Boole, A Treatise On The Calculus of Finite Differences, Dover, 1960, p. 26.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 83, Problem 25.
  • M. Elkadi and B. Mourrain, Symbolic-numeric methods for solving polynomial equations and applications, Chap 3. of A. Dickenstein and I. Z. Emiris, eds., Solving Polynomial Equations, Springer, 2005, pp. 126-168. See p. 152.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 35.

Crossrefs

Row sums are in A001787. Central column is A002457. Half-diagonal is in A090816. A116071, A215652.
Denominators of i-th order differences of n^-1 are given in: (1st) A002378, (2nd) A027480, (3rd) A033488, (4th) A174002, (5th) A253946. - Louis Conover, Mar 02 2015
Columns k >= 1 (offset 1): A000027, A002378, A027480, A033488, A174002, A253946(n+4), ..., with sum of reciprocals: infinity, 1, 1/2, 1/3, 1/4, 1/5, ..., respectively. - Wolfdieter Lang, Jul 20 2022

Programs

  • Haskell
    a003506 n k = a003506_tabl !! (n-1) !! (n-1)
    a003506_row n = a003506_tabl !! (n-1)
    a003506_tabl = scanl1 (\xs ys ->
       zipWith (+) (zipWith (+) ([0] ++ xs) (xs ++ [0])) ys) a007318_tabl
    a003506_list = concat a003506_tabl
    -- Reinhard Zumkeller, Nov 14 2013, Nov 17 2011
    
  • Maple
    with(combstruct):for n from 0 to 11 do seq(m*count(Combination(n), size=m), m = 1 .. n) od; # Zerinvary Lajos, Apr 09 2008
    A003506 := (n,k) -> k*binomial(n,k):
    seq(print(seq(A003506(n,k),k=1..n)),n=1..7); # Peter Luschny, May 27 2011
  • Mathematica
    L[n_, 1] := 1/n; L[n_, m_] := L[n, m] = L[n - 1, m - 1] - L[n, m - 1]; Take[ Flatten[ Table[ 1 / L[n, m], {n, 1, 12}, {m, 1, n}]], 66]
    t[n_, m_] = Gamma[n]/(Gamma[n - m]*Gamma[m]); Table[Table[t[n, m], {m, 1, n - 1}], {n, 2, 12}]; Flatten[%] (* Roger L. Bagula and Gary W. Adamson, Sep 14 2008 *)
    Table[k*Binomial[n,k],{n,1,7},{k,1,n}] (* Peter Luschny, May 27 2011 *)
    t[n_, k_] := Denominator[n!*k!/(n+k+1)!]; Table[t[n-k, k] , {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 28 2013 *)
  • PARI
    A(i,j)=if(i<1||j<1,0,1/subst(intformal(x^(i-1)*(1-x)^(j-1)),x,1))
    
  • PARI
    A(i,j)=if(i<1||j<1,0,1/sum(k=0,i-1,(-1)^k*binomial(i-1,k)/(j+k)))
    
  • PARI
    {T(n, k) = (n + 1 - k) * binomial( n, k - 1)} /* Michael Somos, Feb 06 2011 */
    
  • SageMath
    T_row = lambda n: (n*(x+1)^(n-1)).list()
    for n in (1..10): print(T_row(n)) # Peter Luschny, Feb 04 2017
    # Assuming offset 0:
    def A003506(n, k):
        return falling_factorial(n+1,n)//(factorial(k)*factorial(n-k))
    for n in range(9): print([A003506(n, k) for k in range(n+1)]) # Peter Luschny, Aug 13 2022

Formula

a(n, 1) = 1/n; a(n, k) = a(n-1, k-1) - a(n, k-1) for k > 1.
Considering the integer values (rather than unit fractions): a(n, k) = k*C(n, k) = n*C(n-1, k-1) = a(n, k-1)*a(n-1, k-1)/(a(n, k-1) - a(n-1, k-1)) = a(n-1, k) + a(n-1, k-1)*k/(k-1) = (a(n-1, k) + a(n-1, k-1))*n/(n-1) = k*A007318(n, k) = n*A007318(n-1, k-1). Row sums of integers are n*2^(n-1) = A001787(n); row sums of the unit fractions are A003149(n-1)/A000142(n). - Henry Bottomley, Jul 22 2002
From Vladeta Jovovic, Nov 01 2003: (Start)
G.f.: x*y/(1-x-y*x)^2.
E.g.f.: x*y*exp(x+x*y). (End)
T(n,k) = n*binomial(n-1,k-1) = n*A007318(n-1,k-1). - Philippe Deléham, Aug 04 2006
Binomial transform of A128064(unsigned). - Gary W. Adamson, Aug 29 2007
From Roger L. Bagula and Gary W. Adamson, Sep 14 2008: (Start)
t(n,m) = Gamma(n)/(Gamma(n - m)*Gamma(m)).
f(s,n) = Integral_{x=0..oo} exp(-s*x)*x^n dx = Gamma(n)/s^n; t(n,m) = f(s,n)/(f(s,n-m)*f(s,m)) = Gamma(n)/(Gamma(n - m)*Gamma(m)); the powers of s cancel out. (End)
From Reinhard Zumkeller, Mar 05 2010: (Start)
T(n,5) = T(n,n-4) = A174002(n-4) for n > 4.
T(2*n,n) = T(2*n,n+1) = A005430(n). (End)
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - 2*T(n-2,k-1) - T(n-2,k-2), T(1,1) = 1 and, for n > 1, T(n,k) = 0 if k <= 1 or if k > n. - Philippe Deléham, Mar 17 2012
T(n,k) = Sum_{i=1..k} i*binomial(k,i)*binomial(n+1-k,k+1-i). - Mircea Merca, Apr 11 2012
If we include a main diagonal of zeros so that the array is in the form
0
1 0
2 2 0
3 6 3 0
4 12 12 4 0
...
then we obtain the exponential Riordan array [x*exp(x),x], which factors as [x,x]*[exp(x),x] = A132440*A007318. This array is the infinitesimal generator for A116071. A signed version of the array is the infinitesimal generator for A215652. - Peter Bala, Sep 14 2012
a(n,k) = (n-1)!/((n-k)!(k-1)!) if k > n/2 and a(n,k) = (n-1)!/((n-k-1)!k!) otherwise. [Forms 'core' for Pascal's recurrence; gives common term of RHS of T(n,k) = T(n-1,k-1) + T(n-1,k)]. - Jon Perry, Oct 08 2013
Assuming offset 0: T(n, k) = FallingFactorial(n + 1, n) / (k! * (n - k)!). The counterpart using the rising factorial is A356546. - Peter Luschny, Aug 13 2022

Extensions

Edited by N. J. A. Sloane, Oct 07 2007

A088956 Triangle, read by rows, of coefficients of the hyperbinomial transform.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 16, 9, 3, 1, 125, 64, 18, 4, 1, 1296, 625, 160, 30, 5, 1, 16807, 7776, 1875, 320, 45, 6, 1, 262144, 117649, 27216, 4375, 560, 63, 7, 1, 4782969, 2097152, 470596, 72576, 8750, 896, 84, 8, 1, 100000000, 43046721, 9437184, 1411788, 163296, 15750
Offset: 0

Views

Author

Paul D. Hanna, Oct 26 2003

Keywords

Comments

The hyperbinomial transform of a sequence {b} is defined to be the sequence {d} given by d(n) = Sum_{k=0..n} T(n,k)*b(k), where T(n,k) = (n-k+1)^(n-k-1)*C(n,k).
Given a table in which the n-th row is the n-th binomial transform of the first row, then the hyperbinomial transform of any diagonal results in the next lower diagonal in the table.
The simplest example of a table of iterated binomial transforms is A009998, with a main diagonal of {1,2,9,64,625,...}; and the hyperbinomial transform of this diagonal gives the next lower diagonal, {1,3,16,125,1296,...}, since 1=(1)*1, 3=(1)*1+(1)*2, 16=(3)*1+(2)*2+(1)*9, 125=(16)*1+(9)*2+(3)*9+(1)*64, etc.
Another example: the hyperbinomial transform maps A065440 into A055541, since HYPERBINOMIAL([1,1,1,8,81,1024,15625]) = [1,2,6,36,320,3750,54432] where e.g.f.: A065440(x)+x = x-x/( LambertW(-x)*(1+LambertW(-x)) ), e.g.f.: A055541(x) = x-x*LambertW(-x).
The m-th iteration of the hyperbinomial transform is given by the triangle of coefficients defined by T_m(n,k) = m*(n-k+m)^(n-k-1)*binomial(n,k).
Example: PARI code for T_m: {a=[1,1,1,8,81,1024,15625]; m=1; b=vector(length(a)); for(n=0,length(a)-1, b[n+1]=sum(k=0,n, m*(n-k+m)^(n-k-1)*binomial(n,k)*a[k+1]); print1(b[n+1],","))} RETURNS b=[1,2,6,36,320,3750,54432].
The INVERSE hyperbinomial transform is thus given by m=-1: {a=[1,2,6,36,320,3750,54432]; m=-1; b=vector(length(a)); for(n=0,length(a)-1, b[n+1]=sum(k=0,n, m*(n-k+m)^(n-k-1)*binomial(n,k)*a[k+1]); print1(b[n+1],","))} RETURNS b=[1,1,1,8,81,1024,15625].
Simply stated, the HYPERBINOMIAL transform is to -LambertW(-x)/x as the BINOMIAL transform is to exp(x).
Let A[n] be the set of all forests of labeled rooted trees on n nodes. Build a superset B[n] of A[n] by designating "some" (possibly all or none) of the isolated nodes in each forest. T(n,k) is the number of elements in B[n] with exactly k designated nodes. See A219034. - Geoffrey Critzer, Nov 10 2012

Examples

			Rows begin:
       {1},
       {1,      1},
       {3,      2,     1},
      {16,      9,     3,    1},
     {125,     64,    18,    4,   1},
    {1296,    625,   160,   30,   5,  1},
   {16807,   7776,  1875,  320,  45,  6, 1},
  {262144, 117649, 27216, 4375, 560, 63, 7, 1}, ...
		

Crossrefs

Cf. A088957 (row sums), A000272 (first column), A009998, A105599, A132440, A215534 (matrix inverse), A215652.
Cf. A227325 (central terms).

Programs

  • Haskell
    a088956 n k =  a095890 (n + 1) (k + 1) * a007318' n k `div` (n - k + 1)
    a088956_row n = map (a088956 n) [0..n]
    a088956_tabl = map a088956_row [0..]
    -- Reinhard Zumkeller, Jul 07 2013
  • Mathematica
    nn=8; t=Sum[n^(n-1)x^n/n!, {n,1,nn}]; Range[0,nn]! CoefficientList[Series[Exp[t+y x] ,{x,0,nn}], {x,y}] //Grid (* Geoffrey Critzer, Nov 10 2012 *)

Formula

T(n, k) = (n-k+1)^(n-k-1)*C(n, k).
E.g.f.: -LambertW(-x)*exp(x*y)/x. - Vladeta Jovovic, Oct 27 2003
From Peter Bala, Sep 11 2012: (Start)
Let T(x) = Sum_{n >= 0} n^(n-1)*x^n/n! denote the tree function of A000169. The e.g.f. is (T(x)/x)*exp(t*x) = exp(T(x))*exp(t*x) = 1 + (1 + t)*x + (3 + 2*t + t^2)*x^2/2! + .... Hence the triangle is the exponential Riordan array [T(x)/x,x] belonging to the exponential Appell group.
The matrix power (A088956)^r has the e.g.f. exp(r*T(x))*exp(t*x) with triangle entries given by r*(n-k+r)^(n-k-1)*binomial(n,k) for n and k >= 0. See A215534 for the case r = -1.
Let A(n,x) = x*(x+n)^(n-1) be an Abel polynomial. The present triangle is the triangle of connection constants expressing A(n,x+1) as a linear combination of the basis polynomials A(k,x), 0 <= k <= n. For example, A(4,x+1) = 125*A(0,x) + 64*A(1,x) + 18*A(2,x) + 4*A(3,x) + A(4,x) gives row 4 as [125,64,18,4,1].
Let S be the array with the sequence [1,2,3,...] on the main subdiagonal and zeros elsewhere. S is the infinitesimal generator for Pascal's triangle (see A132440). Then the infinitesimal generator for this triangle is S*A088956; that is, A088956 = Exp(S*A088956), where Exp is the matrix exponential.
With T(x) the tree function as above, define E(x) = T(x)/x. Then A088956 = E(S) = Sum_{n>=0} (n+1)^(n-1)*S^n/n!.
For commuting lower unit triangular matrices A and B, we define A raised to the matrix power B, denoted A^^B, to be the matrix Exp(B*log(A)), where the matrix logarithm Log(A) is defined as Sum_{n >= 1} (-1)^(n+1)*(A-1)^n/n. Let P denote Pascal's triangle A007318. Then the present triangle, call it X, solves the matrix equation P^^X = X . See A215652 for the solution to X^^P = P. Furthermore, if we denote the inverse of X by Y then X^^Y = P. As an infinite tower of matrix powers, A088956 = P^^(P^^(P^^(...))).
A088956 augmented with the sequence (x,x,x,...) on the first superdiagonal is the production matrix for the row polynomials of A105599.
(End)
T(n,k) = A095890(n+1,k+1) * A007318(n,k) / (n-k+1), 0 <= k <= n. - Reinhard Zumkeller, Jul 07 2013
Sum_{k = 0..n} T(n,n-k)*(x - k - 1)^(n-k) = x^n. Setting x = n + 1 gives Sum_{k = 0..n} T(n,k)*k^k = (n + 1)^n. - Peter Bala, Feb 17 2017
As lower triangular matrices, this entry, T, equals unsigned A137542 * A007318 * signed A059297. The Pascal matrix is sandwiched between a pair of inverse matrices, so this entry is conjugate to the Pascal matrix, allowing convergent analytic expressions of T, say f(T), to be computed as f(A007318) sandwiched between the inverse pair. - Tom Copeland, Dec 06 2021

A003725 E.g.f.: exp( x * exp(-x) ).

Original entry on oeis.org

1, 1, -1, -2, 9, -4, -95, 414, 49, -10088, 55521, -13870, -2024759, 15787188, -28612415, -616876274, 7476967905, -32522642896, -209513308607, 4924388011050, -38993940088199, 11731860520780, 3807154270837281
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. this sequence (k=1), A292909 (k=2), A292910 (k=3), A292912 (k=4).

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x Exp[-x]],{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Oct 20 2011 *)
  • PARI
    Vec(serlaplace(exp(exp(-x) * x))) \\ Charles R Greathouse IV, Sep 26 2017

Formula

a(n) = Sum_{k=0..n} (-k)^(n-k)*binomial(n, k). - Vladeta Jovovic, Mar 15 2003
First column of A215652. - Peter Bala, Sep 14 2012
G.f.: Sum_{k>=0} x^k/(1 + k*x)^(k+1). - Ilya Gutkovskiy, Jun 25 2018

A116071 Triangle T, read by rows, equal to Pascal's triangle to the matrix power of Pascal's triangle, so that T = C^C, where C(n,k) = binomial(n,k) and T(n,k) = A000248(n-k)*C(n,k).

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 10, 9, 3, 1, 41, 40, 18, 4, 1, 196, 205, 100, 30, 5, 1, 1057, 1176, 615, 200, 45, 6, 1, 6322, 7399, 4116, 1435, 350, 63, 7, 1, 41393, 50576, 29596, 10976, 2870, 560, 84, 8, 1, 293608, 372537, 227592, 88788, 24696, 5166, 840, 108, 9, 1
Offset: 0

Views

Author

Paul D. Hanna, Feb 03 2006

Keywords

Comments

Column 0 = A000248 (Number of forests with n nodes and height at most 1).
Column 1 = A052512 (Number of labeled trees of height 2).
Row sums = A080108 (Sum_{k=1..n} k^(n-k) * C(n-1,k-1)).
Central terms = A116072(n) = (n+1) * A000108(n) * A000248(n).
From Peter Bala, Sep 13 2012: (Start)
For commuting lower unitriangular matrix A and lower triangular matrix B we define A raised to the matrix power B, denoted by A^B, to be the lower unitriangular matrix Exp(B*Log(A)). Here Exp denotes the matrix exponential defined by the power series
Exp(A) = 1 + A + A^2/2! + A^3/3! + ...
and the matrix logarithm Log(A) is defined by the series
Log(A) = (A-1) - 1/2*(A-1)^2/2 + 1/3*(A-1)^3 - ....
Let A = [f(x),x] and B = [g(x),x] be exponential Riordan arrays in the Appell subgroup and suppose f(0) = 1. Then A and B commute and A^B is the exponential Riordan array [exp(g(x)*log(f(x))),x], also belonging to the Appell group. In the present case we are taking A = B = [exp(x),x], equal to the Pascal triangle A007318.
For any lower unitriangular matrix A (with, say, rational entries) the infinite tower of powers A^(A^(A^(...))) is well-defined (and also has rational entries). An example is given in the Formula section. (End)

Examples

			E.g.f.: E(x,y) = 1 + (1 + y)*x + (3 + 2*y + y^2)*x^2/2!
  + (10 + 9*y + 3*y^2 + y^3)*x^3/3!
  + (41 + 40*y + 18*y^2 + 4*y^3 + y^4)*x^4/4!
  + (196 + 205*y + 100*y^2 + 30*y^3 + 5*y^4 + y^5)*x^5/5! +...
where E(x,y) = exp(x*y) * exp(x*exp(x)).
O.g.f.: A(x,y) = 1 + (1 + y)*x + (3 + 2*y + y^2)*x^2
  + (10 + 9*y + 3*y^2 + y^3)*x^3
  + (41 + 40*y + 18*y^2 + 4*y^3 + y^4)*x^4
  + (196 + 205*y + 100*y^2 + 30*y^3 + 5*y^4 + y^5)*x^5 +...
where
A(x,y) = 1/(1-x*y) + x/(1-x*(y+1))^2 + x^2/(1-x*(y+2))^3 + x^3/(1-x*(y+3))^4 + x^4/(1-x*(y+4))^5 + x^5/(1-x*(y+5))^6 + x^6/(1-x*(y+6))^7 + x^7/(1-x*(y+7))^8 +...
Triangle begins:
  1;
  1, 1;
  3, 2, 1;
  10, 9, 3, 1;
  41, 40, 18, 4, 1;
  196, 205, 100, 30, 5, 1;
  1057, 1176, 615, 200, 45, 6, 1;
  6322, 7399, 4116, 1435, 350, 63, 7, 1;
  41393, 50576, 29596, 10976, 2870, 560, 84, 8, 1;
  293608, 372537, 227592, 88788, 24696, 5166, 840, 108, 9, 1; ...
		

Crossrefs

Programs

  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[Exp[# Exp[#]]&, #&, 10, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
  • PARI
    /* By definition C^C: */
    {T(n,k)=local(A, C=matrix(n+1,n+1,r,c,binomial(r-1,c-1)), L=matrix(n+1,n+1,r,c,if(r==c+1,c))); A=sum(m=0,n,L^m*C^m/m!); A[n+1,k+1]}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • PARI
    /* From e.g.f.: */
    {T(n,k)=local(A=1);A=exp( x*y + x*exp(x +x*O(x^n)) );n!*polcoeff(polcoeff(A, n,x),k,y)}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • PARI
    /* From o.g.f. (Paul D. Hanna, Aug 03 2014): */
    {T(n,k)=local(A=1);A=sum(k=0, n, x^k/(1 - x*(k+y) +x*O(x^n))^(k+1));polcoeff(polcoeff(A, n,x),k,y)}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • PARI
    /* From row polynomials (Paul D. Hanna, Aug 03 2014): */
    {T(n,k)=local(R);R=sum(k=0,n,(k+y)^(n-k)*binomial(n,k));polcoeff(R,k,y)}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • PARI
    /* From formula for T(n,k) (Paul D. Hanna, Aug 03 2014): */
    {T(n,k) = sum(j=0,n-k, binomial(n,j) * binomial(n-j,k) * j^(n-k-j))}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))

Formula

E.g.f.: exp( x*exp(x) + x*y ).
From Peter Bala, Sep 13 2012: (Start)
Exponential Riordan array [exp(x*exp(x)),x] belonging to the Appell group. Thus the e.g.f. for the k-th column of the triangle is x^k/k!*exp(x*exp(x)).
The inverse array, denote it by X, is a signed version of A215652. The infinite tower of matrix powers X^(X^(X^(...))) equals the inverse of Pascal's triangle. (End)
O.g.f.: Sum_{n>=0} x^n / (1 - x*(n+y))^(n+1). - Paul D. Hanna, Aug 03 2014
G.f. for row n: Sum_{k=0..n} binomial(n,k) * (k + y)^(n-k) for n>=0. - Paul D. Hanna, Aug 03 2014
T(n,k) = Sum_{j=0..n-k} C(n,j) * C(n-j,k) * j^(n-k-j) = A000248(n-k)*C(n,k). - Paul D. Hanna, Aug 03 2014
Infinitesimal generator is A216973. - Peter Bala, Feb 13 2017

A216973 Exponential Riordan array [x*exp(x),x].

Original entry on oeis.org

0, 1, 0, 2, 2, 0, 3, 6, 3, 0, 4, 12, 12, 4, 0, 5, 20, 30, 20, 5, 0, 6, 30, 60, 60, 30, 6, 0, 7, 42, 105, 140, 105, 42, 7, 0, 8, 56, 168, 280, 280, 168, 56, 8, 0, 9, 72, 252, 504, 630, 504, 252, 72, 9, 0, 10, 90, 360, 840, 1260, 1260, 840, 360, 90, 10, 0
Offset: 0

Views

Author

Peter Bala, Sep 21 2012

Keywords

Comments

This is the triangle of denominators from Leibniz's harmonic triangle, A003506, augmented with a main diagonal of 0's.
Note, the usual definition of the exponential Riordan array [f(x), x*g(x)] associated with a pair of power series f(x) and g(x) requires f(0) to be nonzero. Here we don't make this assumption. - Peter Bala, Feb 13 2017

Examples

			Triangle begins
.n\k.|..0.....1.....2.....3.....4.....5.....6
= = = = = = = = = = = = = = = = = = = = = = =
..0..|..0
..1..|..1.....0
..2..|..2.....2.....0
..3..|..3.....6.....3.....0
..4..|..4....12....12.....4.....0
..5..|..5....20....30....20.....5.....0
..6..|..6....30....60....60....30.....6.....0
...
		

Crossrefs

Programs

  • Maple
    A216973_row := proc(n) x*exp(x)*exp(x*t): series(%,x,n+1): n!*coeff(%,x,n):
    seq(coeff(%,t,k), k=0..n) end:
    for n from 0 to 10 do A216973_row(n) od; # Peter Luschny, Feb 03 2017
  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[# Exp[#]&, Identity, 11, True] // Flatten (* Jean-François Alcover, Jul 16 2019 *)

Formula

T(n,k) = (n-k)*binomial(n,k) for 0 <= k <= n.
E.g.f.: x*exp(x)*exp(x*t) = 1 + x + (2 + 2*t)*x^2/2! + (3 + 6*t + 3*t^2)*x^3/3! + ....
The exponential Riordan array [x*exp(x),x] factors as [x,x]*[exp(x),x] = A132440*A007318.
This array is the infinitesimal generator for A116071; that is, Exp(A216973) = A116071, where Exp denotes the matrix exponential. A signed version of the array is the infinitesimal generator for A215652.
The first column of the array Exp(t*A216973) is the sequence of idempotent polynomials, the row polynomials of A059297.
Showing 1-5 of 5 results.