A362030 Irregular triangle read by rows where row n contains the balanced binary words of length 2n interpreted as binary numbers.
1, 2, 3, 5, 6, 9, 10, 12, 7, 11, 13, 14, 19, 21, 22, 25, 26, 28, 35, 37, 38, 41, 42, 44, 49, 50, 52, 56, 15, 23, 27, 29, 30, 39, 43, 45, 46, 51, 53, 54, 57, 58, 60, 71, 75, 77, 78, 83, 85, 86, 89, 90, 92, 99, 101, 102, 105, 106, 108, 113, 114, 116, 120, 135
Offset: 1
Examples
The first few terms written as binary words with leading 0's: 01, 10, 0011, 0101, 0110, 1001, 1010, 1100, 000111, 001011, 001101, 001110, ... (cf. A368804). Triangle T(n,k) begins: 1, 2; 3, 5, 6, 9, 10, 12; 7, 11, 13, 14, 19, 21, 22, 25, 26, 28, 35, 37, 38, ...; 15, 23, 27, 29, 30, 39, 43, 45, 46, 51, 53, 54, 57, ...; ...
Links
- Paolo Xausa, Table of n, a(n) for n = 1..17576 (rows 1..8 of the triangle, flattened).
Crossrefs
Programs
-
Maple
T:= n-> sort(map(Bits[Join], combinat[permute]([0$n, 1$n])))[]: seq(T(n), n=1..4); # Alois P. Heinz, Apr 13 2023
-
Mathematica
T[n_] := Sort[FromDigits[#, 2] & /@ Permutations[Join[ConstantArray[0, n], ConstantArray[1, n]]]]; Flatten[Table[T[n], {n, 1, 4}]][[1 ;; 64]] (* Robert P. P. McKone, Aug 29 2023 *)
Comments