cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Simon Burton

Simon Burton's wiki page.

Simon Burton has authored 2 sequences.

A368493 T(n,m) is the number of m-dimensional isotropic subspaces of a 2n-dimensional symplectic space over Z/2, n >= 0 and 0 <= m <= n.

Original entry on oeis.org

1, 1, 3, 1, 15, 15, 1, 63, 315, 135, 1, 255, 5355, 11475, 2295, 1, 1023, 86955, 782595, 782595, 75735, 1, 4095, 1396395, 50868675, 213648435, 103378275, 4922775, 1, 16383, 22362795, 3268162755, 55558766835, 112909751955, 26883274275, 635037975
Offset: 0

Author

Simon Burton, Dec 27 2023

Keywords

Comments

The number of m-dimensional isotropic subspaces of an n-dimensional symplectic space over Z/2.

Examples

			Triangle begins:
  1;
  1,    3;
  1,   15,      15;
  1,   63,     315,      135;
  1,  255,    5355,    11475,      2295;
  1, 1023,   86955,   782595,    782595,     75735;
  1, 4095, 1396395, 50868675, 213648435, 103378275, 4922775;
  ...
		

Crossrefs

Main diagonal gives A028362.
Cf. A022166.

Programs

  • Mathematica
    T[n_,m_]:=Product[(2^(2i)-1),{i,n-m+1,n}]/Product[(2^i-1),{i,1,m}]; Table[T[n,m],{n,0,7},{m,0,n}] (* Stefano Spezia, Dec 28 2023 *)
  • PARI
    T(n,m) = prod(i=n-m+1, n, 2^(2*i)-1)/prod(i=1, m, 2^i-1); \\ Michel Marcus, Dec 27 2023
  • Python
    from math import prod
    q = 2
    N = lambda n, m : (prod([q**(2*i)-1 for i in range(n-m+1, n+1)])//prod([q**i-1 for i in range(1, m+1)]))
    print([N(n, m) for n in range(8) for m in range(n+1)])
    

Formula

T(n,m) = Product_{i=n-m+1..n} (2^(2i)-1)/Product_{i=1..m} (2^i-1).

A358241 Number of connected Dynkin diagrams with n nodes.

Original entry on oeis.org

1, 3, 3, 5, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 1

Author

Simon Burton, Jan 18 2023

Keywords

Comments

The sequence of connected Dynkin diagrams proceeds as {A1}, {A2, B2, G2}, {A3, B3, C3}, {A4, B4, F4, C4, D4}, {A5, B5, C5, D5}, {A6, B6, C6, D6, E6}, {A7, B7, C7, D7, E7}, {A8, B8, C8, D8, E8}, {A9, B9, C9, D9}, ...

References

  • R. W. Carter, Simple groups of Lie type. Vol. 22, John Wiley & Sons, 1989, p. 40.

Crossrefs

Formula

a(n) = 4 for n > 8.

Extensions

a(9) corrected by Andrey Zabolotskiy, Jul 23 2024