A007622 Consider Leibniz's harmonic triangle (A003506) and look at the non-boundary terms. Sequence gives numbers appearing in denominators, sorted.
6, 12, 20, 30, 42, 56, 60, 72, 90, 105, 110, 132, 140, 156, 168, 182, 210, 240, 252, 272, 280, 306, 342, 360, 380, 420, 462, 495, 504, 506, 552, 600, 630, 650, 660, 702, 756, 812, 840, 858, 870, 930, 992, 1056, 1092, 1122, 1190, 1260, 1320, 1332
Offset: 1
Keywords
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 83, Problem 25.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 35.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..1217.
- Eric Weisstein's World of Mathematics, Leibniz Harmonic Triangle.
Programs
-
Mathematica
L[n_, 1] := 1/n; L[n_, m_] := L[n, m] = L[n - 1, m - 1] - L[n, m - 1]; Take[ Union[ Flatten[ Table[ 1/L[n, m], {n, 3, 150}, {m, 2, Floor[n/2 + .5]}]]], 65] t[n_, k_] := Denominator[n!*k!/(n + k + 1)!]; Take[ DeleteDuplicates@ Rest@ Sort@ Flatten@ Table[t[n - k, k], {n, 2, 150}, {k, n/2 + 1}], 65] (* Robert G. Wilson v, Jun 12 2014 *)
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Jul 25 2000. Rechecked Jun 27 2003.
Comments