cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 39 results. Next

A132813 Triangle read by rows: A001263 * A127648 as infinite lower triangular matrices.

Original entry on oeis.org

1, 1, 2, 1, 6, 3, 1, 12, 18, 4, 1, 20, 60, 40, 5, 1, 30, 150, 200, 75, 6, 1, 42, 315, 700, 525, 126, 7, 1, 56, 588, 1960, 2450, 1176, 196, 8, 1, 72, 1008, 4704, 8820, 7056, 2352, 288, 9, 1, 90, 1620, 10080, 26460, 31752, 17640, 4320, 405, 10
Offset: 0

Views

Author

Gary W. Adamson, Sep 01 2007

Keywords

Comments

Also T(n,k) = binomial(n-1, k-1)*binomial(n, k-1), related to Narayana polynomials (see Sulanke reference). - Roger L. Bagula, Apr 09 2008
h-vector for cluster complex associated to the root system B_n. See p. 8, Athanasiadis and C. Savvidou. - Tom Copeland, Oct 19 2014

Examples

			First few rows of the triangle are:
  1;
  1,  2;
  1,  6,   3;
  1, 12,  18,   4;
  1, 20,  60,  40,   5;
  1, 30, 150, 200,  75,   6;
  1, 42, 315, 700, 525, 126, 7;
  ...
		

Crossrefs

Family of polynomials (see A062145): A008459 (c=1), this sequence (c=2), A062196 (c=3), A062145 (c=4), A062264 (c=5), A062190 (c=6).
Columns: A000012 (k=0), A002378 (k=1), A006011 (k=2), 4*A006542 (k=3), 5*A006857 (k=4), 6*A108679 (k=5), 7*A134288 (k=6), 8*A134289 (k=7), 9*A134290 (k=8), 10*A134291 (k=9).
Diagonals: A000027 (k=n), A002411 (k=n-1), A004302 (k=n-2), A108647 (k=n-3), A134287 (k=n-4).
Main diagonal: A000894.
Sums: (-1)^floor((n+1)/2)*A001405 (signed row), A001700 (row), A203611 (diagonal).
Cf. A103371 (mirrored).

Programs

  • GAP
    Flat(List([0..10],n->List([0..n], k->(k+1)*Binomial(n+1,k+1)*Binomial(n+1,k)/(n+1)))); # Muniru A Asiru, Feb 26 2019
    
  • Haskell
    a132813 n k = a132813_tabl !! n !! k
    a132813_row n = a132813_tabl !! n
    a132813_tabl = zipWith (zipWith (*)) a007318_tabl $ tail a007318_tabl
    -- Reinhard Zumkeller, Apr 04 2014
    
  • Magma
    /* triangle */ [[(k+1)*Binomial(n+1,k+1)*Binomial(n+1,k)/(n+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 19 2014
    
  • Maple
    P := (n, x) -> hypergeom([1-n, -n], [1], x): for n from 1 to 9 do PolynomialTools:-CoefficientList(simplify(P(n,x)),x) od; # Peter Luschny, Nov 26 2014
  • Mathematica
    T[n_,k_]=Binomial[n-1,k-1]*Binomial[n,k-1]; Table[Table[T[n,k],{k,1,n}],{n,1,11}]; Flatten[%] (* Roger L. Bagula, Apr 09 2008 *)
    P[n_, x_] := HypergeometricPFQ[{1-n, -n}, {1}, x]; Table[CoefficientList[P[n, x], x], {n, 1, 10}] // Flatten (* Jean-François Alcover, Nov 27 2014, after Peter Luschny *)
  • PARI
    tabl(nn) = {for (n = 1, nn, for (k = 1, n, print1(binomial(n-1, k-1)*binomial(n, k-1) , ", ");););} \\ Michel Marcus, Feb 12 2014
    
  • SageMath
    def A132813(n,k): return binomial(n,k)*binomial(n+1,k)
    print(flatten([[A132813(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Mar 12 2025

Formula

T(n,k) = (k+1)*binomial(n+1,k+1)*binomial(n+1,k)/(n+1), n >= k >= 0.
From Roger L. Bagula, May 14 2010: (Start)
T(n, m) = coefficients(p(x,n)), where
p(x,n) = (1-x)^(2*n)*Sum_{k >= 0} binomial(k+n-1, k)*binomial(n+k, k)*x^k,
or p(x,n) = (1-x)^(2*n)*Hypergeometric2F1([n, n+1], [1], x). (End)
T(n,k) = binomial(n,k) * binomial(n+1,k). - Reinhard Zumkeller, Apr 04 2014
These are the coefficients of the polynomials Hypergeometric2F1([1-n,-n], [1], x). - Peter Luschny, Nov 26 2014
G.f.: A(x,y) = A281260(x,y)/(1-A281260(x,y))/x. - Vladimir Kruchinin, Oct 10 2020

A134577 A127170 * A127648.

Original entry on oeis.org

1, 2, 2, 2, 0, 3, 3, 4, 0, 4, 2, 0, 0, 0, 5, 4, 4, 6, 0, 0, 6, 2, 0, 0, 0, 0, 0, 7, 4, 6, 0, 8, 0, 0, 0, 8, 3, 0, 6, 0, 0, 0, 0, 0, 9, 4, 4, 0, 0, 10, 0, 0, 0, 0, 10
Offset: 1

Views

Author

Gary W. Adamson, Nov 02 2007

Keywords

Comments

Row sums = A007429: (1, 4, 5, 11, 7, 20, 9, 26, ...).
Left border = A000005: (1, 2, 2, 3, 2, 4, 2, ...).
A134577 * [1/1, 1/2, 1/3, ...] = A007425: (1, 3, 3, 6, 3, 9, 3, 10, ...).
A134577 * [1, 2, 3, ...] = A007433: (1, 6, 11, 27, 27, 66, ...).
A134577 * A000005 = A034761: (1, 6, 8, 23, 12, 48, ...).

Examples

			First few rows of the triangle:
  1;
  2, 2;
  2, 0, 3;
  3, 4, 0, 4;
  2, 0, 0, 0, 5
  4, 4, 6, 0, 0, 6;
  2, 0, 0, 0, 0, 0, 7;
  4, 6, 0, 8, 0, 0, 0, 8;
  ...
		

Crossrefs

Formula

A127649 A127648 * A054523 as infinite lower triangular matrices.

Original entry on oeis.org

1, 2, 2, 6, 0, 3, 8, 4, 0, 4, 20, 0, 0, 0, 5, 12, 12, 6, 0, 0, 6, 42, 0, 0, 0, 0, 0, 7, 32, 16, 0, 8, 0, 0, 0, 8, 54, 0, 18, 0, 0, 0, 0, 0, 9, 40, 40, 0, 0, 10, 0, 0, 0, 0, 10, 110, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 48, 24, 24, 24, 0, 12, 0, 0, 0, 0, 0, 12, 156, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 84
Offset: 1

Views

Author

Gary W. Adamson, Jan 22 2007

Keywords

Comments

Natural number transform of A054523.
Row sums = n^2, left column = A002618

Examples

			First few rows of the triangle are:
1;
2, 2;
6, 0, 3;
8, 4, 0, 4;
20, 0, 0, 0, 5;
12, 12, 6, 0, 0, 6;
42, 0, 0, 0, 0, 0, 7;
...
		

Crossrefs

Programs

  • Maple
    A054523 := proc(n,k) if n mod k = 0 then numtheory[phi](n/k) ; else 0 ; fi ; end: A127649 := proc(n,k) A054523(n,k)*n ; end: for n from 1 to 20 do for k from 1 to n do printf("%d,",A127649(n,k)) ; od: od: # R. J. Mathar, Nov 01 2007

Formula

T(n,k)=n*A054523(n,k). - R. J. Mathar, Nov 01 2007
T(n,k) = Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y), n) = k], where f(x,y) = x - y. - Mats Granvik, Oct 08 2023

Extensions

More terms from R. J. Mathar, Nov 01 2007

A127733 Square of A127648 = Triangle read by rows, n^2 preceded by (n-1) zeros.

Original entry on oeis.org

1, 0, 4, 0, 0, 9, 0, 0, 0, 16, 0, 0, 0, 0, 25, 0, 0, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 49
Offset: 1

Views

Author

Gary W. Adamson, Jan 26 2007

Keywords

Examples

			First few rows of the triangle are:
1;
0, 4;
0, 0, 9;
0, 0, 0, 16;
0, 0, 0, 0, 25;
...
		

Crossrefs

Cf. A127648.

A127448 Triangle T(n,k) read by rows: matrix product A054525 * A127648.

Original entry on oeis.org

1, -1, 2, -1, 0, 3, 0, -2, 0, 4, -1, 0, 0, 0, 5, 1, -2, -3, 0, 0, 6, -1, 0, 0, 0, 0, 0, 7, 0, 0, 0, -4, 0, 0, 0, 8, 0, 0, -3, 0, 0, 0, 0, 0, 9, 1, -2, 0, 0, -5, 0, 0, 0, 0, 10, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 2, 0, -4, 0, -6, 0, 0, 0, 0, 0, 12, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 1, -2, 0, 0, 0, 0, -7, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gary W. Adamson, Jan 14 2007

Keywords

Examples

			First few rows of the triangle are;
1;
-1, 2;
-1, 0, 3;
0, -2, 0, 4;
-1, 0, 0, 0, 5;
1, -2, -3, 0, 0, 6;
-1, 0, 0, 0, 0, 0, 7;
0, 0, 0, -4, 0, 0, 0, 8;
0, 0, -3, 0, 0, 0, 0, 0, 9;
1, -2, 0, 0,-5, 0, 0, 0, 0, 10;
...
		

Crossrefs

Programs

  • Maple
    A127648 := proc(n,k) if n = k then n; else 0 ; fi; end:
    A054525 := proc(n,k) if k = n then 1; elif n mod k = 0 then numtheory[mobius](n/k) ; else 0 ; fi; end:
    A127448 := proc(n,k) add( A054525(n,j)*A127648(j,k), j=k..n) ; end: seq(seq( A127448(n,k),k=1..n),n=1..15) ;

Formula

T(n,k) = sum _{j=k..n} A054525(n,j)*A127648(j,k) = k*A054525(n,k).
sum_{k=1..n} T(n,k) = A000010(n) (row sums).
T(n,1) = A008683(n).

Extensions

Converted comments to formulas, extended - R. J. Mathar, Sep 11 2009
Corrected A-number typo in a formula - R. J. Mathar, Sep 17 2009
Corrected last example line by John Mason, Jan 07 2015

A128621 A127648 * A128174 as an infinite lower triangular matrix.

Original entry on oeis.org

1, 0, 2, 3, 0, 3, 0, 4, 0, 4, 5, 0, 5, 0, 5, 0, 6, 0, 6, 0, 6, 7, 0, 7, 0, 7, 0, 7, 0, 8, 0, 8, 0, 8, 0, 8, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 10, 0, 10, 0, 10, 0, 10, 0, 10, 11, 0, 11, 0, 11, 0, 11, 0, 11, 0, 11, 0, 12, 0, 12, 0, 12, 0, 12, 0, 12, 0, 12, 13, 0, 13, 0, 13, 0, 13, 0, 13, 0, 13, 0, 13
Offset: 1

Views

Author

Gary W. Adamson, Mar 14 2007

Keywords

Examples

			First few rows of the triangle:
  1;
  0, 2;
  3, 0, 3;
  0, 4, 0, 4;
  5, 0, 5, 0, 5;
  ...
		

Crossrefs

Cf. A093005 (row sums).

Programs

  • Magma
    [n*(1+(-1)^(n+k))/2: k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 13 2024
    
  • Mathematica
    Table[n*(1+(-1)^(n+k))/2, {n,15}, {k,n}]//Flatten (* G. C. Greubel, Mar 13 2024 *)
  • SageMath
    flatten([[n*(1+(-1)^(n+k))//2 for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Mar 13 2024

Formula

Odd rows: n terms of n, 0, n, ...; even rows, n terms of 0, n, 0, ...
T(n,k) = n if n+k even, T(n,k) = 0 if n+k odd.
Sum_{k=1..n} T(n, k) = A093005(n) (row sums).
From G. C. Greubel, Mar 13 2024: (Start)
T(n, k) = n*(1 + (-1)^(n+k))/2.
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (-1)^(n+1)*A093005(n).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = (1/2)*(1-(-1)^n) * A000326(floor((n+1)/2)).
Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*T(n-k+1, k) = (1/2)*(1 - (-1)^n)*A123684(floor((n+1)/2)). (End)

Extensions

More terms added by G. C. Greubel, Mar 13 2024

A144824 Triangle read by rows, A054533 * A127648 (matrix product).

Original entry on oeis.org

1, -1, 2, -1, -2, 6, 0, -4, 0, 8, -1, -2, -3, -4, 20, 1, -2, -6, -4, 5, 12, -1, -2, -3, -4, -5, -6, 42, 0, 0, 0, -16, 0, 0, 0, 32, 0, 0, -9, 0, 0, -18, 0, 0, 54, 1, -2, 3, -4, -20, -6, 7, -8, 9, 40, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, 110
Offset: 1

Views

Author

Gary W. Adamson, Sep 21 2008

Keywords

Comments

Row sums = A023896: (1, 1, 3, 4, 10, 16, 21, ...).
Right border = A002618: (1, 2, 6, 8, 20, 12, ...).
Left border = mu(n) = A008683 (n).

Examples

			Triangle A054533 starts as follows:
   1;
  -1,  1;
  -1, -1,  2;
   0, -2,  0,  2;
  -1, -1, -1, -1, 4;
   1, -1, -2, -1, 1, 2;
   ...
The first few rows of triangle A144824 are as follows:
   1;
  -1,  2;
  -1, -2,  6;
   0, -4,  0,  8;
  -1, -2, -3, -4, 20;
   1, -2, -6, -4,  5, 12;
  -1, -2, -3, -4, -5, -6, 42;
   ...
		

Crossrefs

Formula

Triangle read by rows, A054533 * A127648 (matrix product). The operation is equivalent to taking termwise products of row A054533 terms and the natural numbers.
T(n, k) = k * Sum_{d|gcd(n,k)} d * mu(n/d) for n >= 1 and 1 <= k <= n. - Petros Hadjicostas, Jul 28 2019
a(n) = A002260(n)*A054533(n). - Jinyuan Wang, Jul 29 2019

A134464 (A127648 * A000012 + A000012 * A127773) - A000012.

Original entry on oeis.org

1, 2, 4, 3, 5, 8, 4, 6, 9, 13, 5, 7, 10, 14, 19, 6, 8, 11, 15, 20, 26, 7, 9, 12, 16, 21, 27, 34, 8, 10, 13, 17, 22, 28, 35, 43, 9, 11, 14, 18, 23, 29, 36, 44, 53, 10, 12, 15, 19, 24, 30, 37, 45, 54, 64
Offset: 1

Views

Author

Gary W. Adamson, Oct 26 2007

Keywords

Comments

Row sums = A134465: (1, 6, 16, 32, 55, 86, ...).

Examples

			First few rows of the triangle:
  1;
  2,  4;
  3,  5,  8;
  4,  6,  9, 13;
  5,  7, 10, 14, 19;
  6,  8, 11, 15, 20, 26;
  7,  9, 12, 16, 21, 27, 34;
  ...
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[RecurrenceTable[{a[1]==i,a[n]==a[n-1]+n},a,{n,i}],{i,10}]] (* Harvey P. Dale, Nov 12 2013 *)

Formula

(A127648 * A000012 * A000012 * A127773) - A000012, as infinite lower triangular matrices.

A135223 Triangle A000012 * A127648 * A103451, read by rows.

Original entry on oeis.org

1, 3, 2, 6, 2, 3, 10, 2, 3, 4, 15, 2, 3, 4, 5, 21, 2, 3, 4, 5, 6, 28, 2, 3, 4, 5, 6, 7, 36, 2, 3, 4, 5, 6, 7, 8, 45, 2, 3, 4, 5, 6, 7, 8, 9, 55, 2, 3, 4, 5, 6, 7, 8, 9, 10, 66, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 78, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 91, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
Offset: 1

Views

Author

Gary W. Adamson, Nov 23 2007

Keywords

Comments

Row sums = A028387.

Examples

			First few rows of the triangle are:
   1;
   3, 2;
   6, 2, 3;
  10, 2, 3, 4;
  15, 2, 3, 4, 5;
...
		

Crossrefs

Programs

  • GAP
    T:= function(n,k)
        if k=1 then return Binomial(n+1,2);
        else return k;
        fi; end;
    Flat(List([1..15], n-> List([1..n], k-> T(n,k) ))); # G. C. Greubel, Nov 20 2019
  • Magma
    [k eq 1 select Binomial(n+1,2) else k: k in [1..n], n in [1..15]]; // G. C. Greubel, Nov 20 2019
    
  • Maple
    seq(seq( `if`(k=1, binomial(n+1,2), k), k=1..n), n=1..15); # G. C. Greubel, Nov 20 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==1, Binomial[n+1, 2], k]; Table[T[n, k], {n, 15}, {k,n}]//Flatten (* G. C. Greubel, Nov 20 2019 *)
  • PARI
    T(n,k) = if(k==1, binomial(n+1,2), k); \\ G. C. Greubel, Nov 20 2019
    
  • Sage
    @CachedFunction
    def T(n,k):
        if (k==1): return binomial(n+1, 2)
        else: return k
    [[T(n,k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Nov 20 2019
    

Formula

T(n,k) = A000012(n,k) * A127648(n,k) * A103451(n,k) as infinite lower triangular matrices. Replace left border of 1's in A002260 with (1, 3, 6, 10, 15, ...).
T(n, k) = k with T(n,1) = binomial(n+1, 2). - G. C. Greubel, Nov 20 2019

Extensions

More terms added by G. C. Greubel, Nov 20 2019

A143256 Triangle read by rows, matrix multiplication A051731 * A128407 * A127648, 1<=k<=n.

Original entry on oeis.org

1, 1, -2, 1, 0, -3, 1, -2, 0, 0, 1, 0, 0, 0, -5, 1, -2, -3, 0, 0, 6, 1, 0, 0, 0, 0, 0, -7, 1, -2, 0, 0, 0, 0, 0, 0, 1, 0, -3, 0, 0, 0, 0, 0, 0, 1, -2, 0, 0, -5, 0, 0, 0, 0, 10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11, 1, -2, -3, 0, 0, 6, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13, 1, -2, 0, 0, 0, 0, -7, 0, 0, 0, 0, 0, 0, 14
Offset: 1

Views

Author

Gary W. Adamson, Aug 02 2008

Keywords

Comments

Right border = n*mu(n) = A055615.
Row sums = A023900: (1, -1, -2, -1, -4, 2, -6,...).

Examples

			First few rows of the triangle =
1;
1, -2;
1, 0, -3;
1, -2, 0, 0;
1, 0, 0, 0, -5;
1, -2, -3, 0, 0, 6;
1, 0, 0, 0, 0, 0, -7;
...
		

Crossrefs

Programs

  • Maple
    seq(seq(`if`(i mod j = 0, j*numtheory:-mobius(j),0), j=1..i),i=1..20); # Robert Israel, Sep 07 2014
  • Mathematica
    Table[If[Divisible[n, k], k MoebiusMu[k], 0], {n, 1, 14}, {k, 1, n}] (* Jean-François Alcover, Jun 19 2019 *)
  • Sage
    A143256_row = lambda n: [k*moebius(k) if k.divides(n) else 0 for k in (1..n)]
    for n in (1..10): print(A143256_row(n)) # Peter Luschny, Jan 05 2018

Formula

Triangle read by rows, A051731 * A128407 * A127648, 1<=k<=n
Showing 1-10 of 39 results. Next