cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A132814 A007318^(-1) * A132813.

Original entry on oeis.org

1, 0, 2, 0, 2, 3, 0, 0, 9, 4, 0, 0, 6, 24, 5, 0, 0, 0, 40, 50, 6, 0, 0, 0, 20, 150, 90, 7, 0, 0, 0, 0, 175, 420, 147, 8, 0, 0, 0, 0, 70, 840, 980, 224, 9, 0, 0, 0, 0, 0, 756, 2940, 2016, 324, 10, 0, 0, 0, 0, 0, 252, 4410, 8400, 3780, 450, 11
Offset: 0

Views

Author

Gary W. Adamson, Sep 01 2007

Keywords

Comments

Row sums = A005773 starting (1, 2, 5, 13, 35, 96, ...).

Examples

			First few rows of the triangle:
  1;
  0, 2;
  0, 2, 3;
  0, 0, 9,  4;
  0, 0, 6, 24,   5;
  0, 0, 0, 40,  50,  6;
  0, 0, 0, 20, 150, 90, 7;
  ...
		

Crossrefs

Programs

  • PARI
    tabl(nn) = {t007318 = matrix(nn, nn, n, k, binomial(n-1, k-1)); t132813 = matrix(nn, nn, n, k, binomial(n-1, k-1)*binomial(n, k-1)); t132814 = t007318^(-1)*t132813; for (n=1, nn, for (k=1, n, print1(t132814[n, k], ", ");););} \\ Michel Marcus, Feb 12 2014

Formula

Inverse binomial transform of A132813.

Extensions

More terms from Michel Marcus, Feb 12 2014

A001700 a(n) = binomial(2*n+1, n+1): number of ways to put n+1 indistinguishable balls into n+1 distinguishable boxes = number of (n+1)-st degree monomials in n+1 variables = number of monotone maps from 1..n+1 to 1..n+1.

Original entry on oeis.org

1, 3, 10, 35, 126, 462, 1716, 6435, 24310, 92378, 352716, 1352078, 5200300, 20058300, 77558760, 300540195, 1166803110, 4537567650, 17672631900, 68923264410, 269128937220, 1052049481860, 4116715363800, 16123801841550, 63205303218876, 247959266474052
Offset: 0

Views

Author

Keywords

Comments

To show for example that C(2n+1, n+1) is the number of monotone maps from 1..n + 1 to 1..n + 1, notice that we can describe such a map by a nondecreasing sequence of length n + 1 with entries from 1 to n + 1. The number k of increases in this sequence is anywhere from 0 to n. We can specify these increases by throwing k balls into n+1 boxes, so the total is Sum_{k = 0..n} C((n+1) + k - 1, k) = C(2*n+1, n+1).
Also number of ordered partitions (or compositions) of n + 1 into n + 1 parts. E.g., a(2) = 10: 003, 030, 300, 012, 021, 102, 120, 210, 201, 111. - Mambetov Bektur (bektur1987(AT)mail.ru), Apr 17 2003
Also number of walks of length n on square lattice, starting at origin, staying in first and second quadrants. - David W. Wilson, May 05 2001. (E.g., for n = 2 there are 10 walks, all starting at 0, 0: 0, 1 -> 0, 0; 0, 1 -> 1, 1; 0, 1 -> 0, 2; 1, 0 -> 0, 0; 1, 0 -> 1, 1; 1, 0 -> 2, 0; 1, 0 -> 1, -1; -1, 0 -> 0, 0; -1, 0 -> -1, 1; -1, 0-> -2, 0.)
Also total number of leaves in all ordered trees with n + 1 edges.
Also number of digitally balanced numbers [A031443] from 2^(2*n+1) to 2^(2*n+2). - Naohiro Nomoto, Apr 07 2001
Also number of ordered trees with 2*n + 2 edges having root of even degree and nonroot nodes of outdegree 0 or 2. - Emeric Deutsch, Aug 02 2002
Also number of paths of length 2*d(G) connecting two neighboring nodes in optimal chordal graph of degree 4, G(2*d(G)^2 + 2*d(G) + 1, 2d(G) + 1), where d(G) = diameter of graph G. - S. Bujnowski (slawb(AT)atr.bydgoszcz.pl), Feb 11 2002
Define an array by m(1, j) = 1, m(i, 1) = i, m(i, j) = m(i, j-1) + m(i-1, j); then a(n) = m(n, n), diagonal of A165257 - Benoit Cloitre, May 07 2002
Also the numerator of the constant term in the expansion of cos^(2*n)(x) or sin^(2*n)(x) when the denominator is 2^(2*n-1). - Robert G. Wilson v
Consider the expansion of cos^n(x) as a linear combination of cosines of multiple angles. If n is odd, then the expansion is a combination of a*cos((2*k-1)*x)/2^(n-1) for all 2*k - 1 <= n. If n is even, then the expansion is a combination of a*cos(2k*x)/2^(n-1) terms plus a constant. "The constant term, [a(n)/2^(2n-1)], is due to the fact that [cos^2n(x)] is never negative, i.e., electrical engineers would say the average or 'dc value' of [cos^(2*n)(x)] is [a(n)/2^(2*n-1)]. The dc value of [cos^(2*n-1)(x)] on the other hand, is zero because it is symmetrical about the horizontal axis, i.e., it is negative and positive equally." Nahin[62] - Robert G. Wilson v, Aug 01 2002
Also number of times a fixed Dyck word of length 2*k occurs in all Dyck words of length 2*n + 2*k. Example: if the fixed Dyck word is xyxy (k = 2), then it occurs a(1) = 3 times in the 5 Dyck words of length 6 (n = 1): (xy[xy)xy], xyxxyy, xxyyxy, x(xyxy)y, xxxyyy (placed between parentheses). - Emeric Deutsch, Jan 02 2003
a(n+1) is the determinant of the n X n matrix m(i, j) = binomial(2*n-i, j). - Benoit Cloitre, Aug 26 2003
a(n-1) = (2*n)!/(2*n!*n!), formula in [Davenport] used by Gauss for the special case prime p = 4*n + 1: x = a(n-1) mod p and y = x*(2n)! mod p are solutions of p = x^2 + y^2. - Frank Ellermann. Example: For prime 29 = 4*7 + 1 use a(7-1) = 1716 = (2*7)!/(2*7!*7!), 5 = 1716 mod 29 and 2 = 5*(2*7)! mod 29, then 29 = 5*5 + 2*2.
The number of compositions of 2*n, say c_1 + c_2 + ... + c_k = 2n, satisfy that Sum_{i = 1..j} c_i < 2*j for all j = 1..k, or equivalently, the number of subsets, say S, of [2*n-1] = {1, 2, ..., 2*n-1} with at least n elements such that if 2k is in S, then there must be at least k elements in S smaller than 2k. E.g., a(2) = 3 because we can write 4 = 1 + 1 + 1 + 1 = 1 + 1 + 2 = 1 + 2 + 1. - Ricky X. F. Chen (ricky_chen(AT)mail.nankai.edu.cn), Jul 30 2006
The number of walks of length 2*n + 1 on an infinite linear lattice that begin at the origin and end at node (1). Also the number of paths on a square lattice from the origin to (n+1, n) that use steps (1,0) and (0,1). Also number of binary numbers of length 2*n + 1 with n + 1 ones and n zeros. - Stefan Hollos (stefan(AT)exstrom.com), Dec 10 2007
If Y is a 3-subset of an 2*n-set X then, for n >= 3, a(n-1) is the number of n-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 16 2007
Also the number of rankings (preferential arrangements) of n unlabeled elements onto n levels when empty levels are allowed. - Thomas Wieder, May 24 2008
Also the Catalan transform of A000225 shifted one index, i.e., dropping A000225(0). - R. J. Mathar, Nov 11 2008
With offset 1. The number of solutions in nonnegative integers to X1 + X2 + ... + Xn = n. The number of terms in the expansion of (X1 + X2 + ... + Xn)^n. The coefficient of x^n in the expansion of (1 + x + x^2 + ...)^n. The number of distinct image sets of all functions taking [n] into [n]. - Geoffrey Critzer, Feb 22 2009
The Hankel transform of the aerated sequence 1, 0, 3, 0, 10, 0, ... is 1, 3, 3, 5, 5, 7, 7, ... (A109613(n+1)). - Paul Barry, Apr 21 2009
Also the number of distinct network topologies for a network of n items with 1 to n - 1 unidirectional connections to other objects in the network. - Anthony Bachler, May 05 2010
Equals INVERT transform of the Catalan numbers starting with offset 1. E.g.: a(3) = 35 = (1, 2, 5) dot (10, 3, 1) + 14 = 21 + 14 = 35. - Gary W. Adamson, May 15 2009
The integral of 1/(1+x^2)^(n+1) is given by a(n)/2^(2*n - 1) * (x/(1 + x^2)^n*P(x) + arctan(x)), where P(x) is a monic polynomial of degree 2*n - 2 with rational coefficients. - Christiaan van de Woestijne, Jan 25 2011
a(n) is the number of Schroder paths of semilength n in which the (2,0)-steps at level 0 come in 2 colors and there are no (2,0)-steps at a higher level. Example: a(2) = 10 because, denoting U = (1,1), H = (1,0), and D = (1,-1), we have 2^2 = 4 paths of shape HH, 2 paths of shape HUD, 2 paths of shape UDH, and 1 path of each of the shapes UDUD and UUDD. - Emeric Deutsch, May 02 2011
a(n) is the number of Motzkin paths of length n in which the (1,0)-steps at level 0 come in 3 colors and those at a higher level come in 2 colors. Example: a(3)=35 because, denoting U = (1,1), H = (1,0), and D = (1,-1), we have 3^3 = 27 paths of shape HHH, 3 paths of shape HUD, 3 paths of shape UDH, and 2 paths of shape UHD. - Emeric Deutsch, May 02 2011
Also number of digitally balanced numbers having length 2*(n + 1) in binary representation: a(n) = #{m: A070939(A031443(m)) = 2*(n + 1)}. - Reinhard Zumkeller, Jun 08 2011
a(n) equals 2^(2*n + 3) times the coefficient of Pi in 2F1([1/2, n+2]; [3/2]; -1). - John M. Campbell, Jul 17 2011
For positive n, a(n) equals 4^(n+2) times the coefficient of Pi^2 in Integral_{x = 0..Pi/2} x sin^(2*n + 2)x. - John M. Campbell, Jul 19 2011 [Apparently, the contributor means Integral_{x = 0..Pi/2} x * (sin(x))^(2*n + 2).]
a(n-1) = C(2*n, n)/2 is the number of ways to assign 2*n people into 2 (unlabeled) groups of size n. - Dennis P. Walsh, Nov 09 2011
Equals row sums of triangle A205945. - Gary W. Adamson, Feb 01 2012
a(n-1) gives the number of n-regular sequences defined by Erdős and Gallai in 1960 in connection with the degree sequences of simple graphs. - Matuszka Tamás, Mar 06 2013
a(n) is the sum of falling diagonals of squares in the comment in A085812 (equivalent to the Cloitre formula of Aug 2002). - John Molokach, Sep 26 2013
For n > 0: largest terms of Zigzag matrices as defined in A088961. - Reinhard Zumkeller, Oct 25 2013
Also the number of different possible win/loss round sequences (from the perspective of the eventual winner) in a "best of 2*n + 1" two-player game. For example, a(2) = 10 means there are 10 different win/loss sequences in a "best of 5" game (like a tennis match in which the first player to win 3 sets, out of a maximum of 5, wins the match); the 10 sequences are WWW, WWLW, WWLLW, WLWW, WLWLW, WLLWW, LWWW, LWWLW, LWLWW, LLWWW. See also A072600. - Philippe Beaudoin, May 14 2014; corrected by Jon E. Schoenfield, Nov 23 2014
When adding 1 to the beginning of the sequence: Convolving a(n)/2^n with itself equals 2^(n+1). For example, when n = 4: convolving {1, 1/1, 3/2, 10/4, 35/8, 126/16} with itself is 32 = 2^5. - Bob Selcoe, Jul 16 2014
From Tom Copeland, Nov 09 2014: (Start)
The shifted array belongs to a family of arrays associated to the Catalan A000108 (t = 1), and Riordan, or Motzkin sums A005043 (t = 0), with the o.g.f. [1 - sqrt(1 - 4x/(1 + (1 - t)x))]/2 and inverse x*(1 - x)/[1 + (t - 1)*x*(1 - x)]. See A091867 for more info on this family. Here is t = -3 (mod signs in the results).
Let C(x) = [1 - sqrt(1-4x)]/2, an o.g.f. for the Catalan numbers A000108, with inverse Cinv(x) = x*(1-x) and P(x,t) = x/(1 + t*x) with inverse P(x, -t).
O.g.f: G(x) = [-1 + sqrt(1 + 4*x/(1 - 4*x))]/2 = -C[P(-x, 4)].
Inverse o.g.f: Ginv(x) = x*(1 + x)/(1 + 4*x*(1 + x)) = -P(Cinv(-x), -4) (shifted signed A001792). A088218(x) = 1 + G(x).
Equals A001813/2 omitting the leading 1 there. (End)
Placing n distinguishable balls into n indistinguishable boxes gives A000110(n) (the number of set partitions). - N. J. A. Sloane, Jun 19 2015
The sequence is the INVERTi transform of A049027: (1, 4, 17, 74, 326, ...). - Gary W. Adamson, Jun 23 2015
a(n) is the number of compositions of 2*n + 2 such that the sum of the elements at odd positions is equal to the sum of the elements at even positions. a(2) = 10 because there are 10 such compositions of 6: (3, 3), (1, 3, 2), (2, 3, 1), (1, 1, 2, 2), (1, 2, 2, 1), (2, 2, 1, 1), (2, 1, 1, 2), (1, 2, 1, 1, 1), (1, 1, 1, 2, 1), (1, 1, 1, 1, 1, 1). - Ran Pan, Oct 08 2015
a(n-1) is also the Schur function of the partition (n) of n evaluated at x_1 = x_2 = ... = x_n = 1, i.e., the number of semistandard Young tableaux of shape (n) (weakly increasing rows with n boxes with numbers from {1, 2, ..., n}). - Wolfdieter Lang, Oct 11 2015
Also the number of ordered (rooted planar) forests with a total of n+1 edges and no trivial trees. - Nachum Dershowitz, Mar 30 2016
a(n) is the number of sets (i1,...in) of length n so that n >= i1 >= i2 >= ...>= in >= 1. For instance, n=3 as there are only 10 such sets (3,3,3) (3,3,2) (3,3,1) (3,2,2) (3,2,1) (3,1,1) (2,2,2) (2,2,1) (2,1,1) (1,1,1,) 3,2,1 is each used 10 times respectively. - Anton Zakharov, Jul 04 2016
The repeated middle term in the odd rows of Pascal's triangle, or half the central binomial coefficient in the even rows of Pascal's triangle, n >= 2. - Enrique Navarrete, Feb 12 2018
a(n) is the number of walks of length 2n+1 from the origin with steps (1,1) and (1,-1) that stay on or above the x-axis. Equivalently, a(n) is the number of walks of length 2n+1 from the origin with steps (1,0) and (0,1) that stay in the first octant. - Alexander Burstein, Dec 24 2019
Total number of nodes summed over all Dyck paths of semilength n. - Alois P. Heinz, Mar 08 2020
a(n-1) is the determinant of the n X n matrix m(i, j) = binomial(n+i-1, j). - Fabio Visonà, May 21 2022
Let X_i be iid standard Gaussian random variable N(0,1), and S_n be the partial sum S_n = X_1+...+X_n. Then P(S_1>0,S_2>0,...,S_n>0) = a(n+1)/2^(2n-1) = a(n+1) / A004171(n+1). For example, P(S_1>0) = 1/2, P(S_1>0,S_2>0) = 3/8, P(S_1>0,S_2>0,S_3>0) = 5/16, etc. This probability is also equal to the volume of the region x_1 > 0, x_2 > -x_1, x_3 > -(x_1+x_2), ..., x_n > -(x_1+x_2+...+x_(n-1)) in the hypercube [-1/2, 1/2]^n. This also holds for the Cauchy distribution and other stable distributions with mean 0, skew 0 and scale 1. - Xiaohan Zhang, Nov 01 2022
a(n) is the number of parking functions of size n+1 avoiding the patterns 132, 213, and 321. - Lara Pudwell, Apr 10 2023
Number of vectors in (Z_>=0)^(n+1) such that the sum of the components is n+1. binomial(2*n-1, n) provides this property for n. - Michael Richard, Jun 12 2023
Also number of discrete negations on the finite chain L_n={0,1,...,n-1,n}, i.e., monotone decreasing unary operators such that N(0)=n and N(n)=0. - Marc Munar, Oct 10 2023
a(n) is the number of Dyck paths of semilength n+1 having one of its peaks marked. - Juan B. Gil, Jan 03 2024
a(n) is the dimension of the (n+1)-st symmetric power of an (n+1)-dimensional vector space. - Mehmet A. Ates, Feb 15 2024
a(n) is the independence number of the twisted odd graph O^(sigma)(n+2). - _Miquel A. Fiol, Aug 26 2024
a(n) is the number of non-descending sequences with length n and the last number is less or equal to n. a(n) is also the number of integer partitions (of any positive integer) with length n and largest part is less or equal to n. - Zlatko Damijanic, Dec 06 2024
a(n) is the number of triangulations of a once-punctured (n+1)-gon [from Fontaine & Plamondon's Theorem 3.6]. - Esther Banaian, May 06 2025

Examples

			There are a(2)=10 ways to put 3 indistinguishable balls into 3 distinguishable boxes, namely, (OOO)()(), ()(OOO)(), ()()(OOO), (OO)(O)(), (OO)()(O), (O)(OO)(), ()(OO)(O), (O)()(OO), ()(O)(OO), and (O)(O)(O). - _Dennis P. Walsh_, Apr 11 2012
a(2) = 10: Semistandard Young tableaux for partition (3) of 3 (the indeterminates x_i, i = 1, 2, 3 are omitted and only their indices are given): 111, 112, 113, 122, 123, 133, 222, 223, 233, 333. - _Wolfdieter Lang_, Oct 11 2015
		

References

  • H. Davenport, The Higher Arithmetic. Cambridge Univ. Press, 7th ed., 1999, ch. V.3 (p. 122).
  • A. Frosini, R. Pinzani, and S. Rinaldi, About half the middle binomial coefficient, Pure Math. Appl., 11 (2000), 497-508.
  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 449.
  • J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
  • Paul J. Nahin, "An Imaginary Tale, The Story of [Sqrt(-1)]," Princeton University Press, Princeton, NJ 1998, p. 62.
  • L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A000984(n+1)/2.
a(n) = (2*n+1)*Catalan(n) [A000108] = A035324(n+1, 1) (first column of triangle).
Row sums of triangles A028364, A050166, A039598.
Bisections: a(2*k) = A002458(k), a(2*k+1) = A001448(k+1)/2, k >= 0.
Other versions of the same sequence: A088218, A110556, A138364.
Diagonals 1 and 2 of triangle A100257.
Second row of array A102539.
Column of array A073165.
Row sums of A103371. - Susanne Wienand, Oct 22 2011
Cf. A002054: C(2*n+1, n-1). - Bruno Berselli, Jan 20 2014

Programs

  • GAP
    List([0..30],n->Binomial(2*n+1,n+1)); # Muniru A Asiru, Feb 26 2019
  • Haskell
    a001700 n = a007318 (2*n+1) (n+1)  -- Reinhard Zumkeller, Oct 25 2013
    
  • Magma
    [Binomial(2*n, n)/2: n in [1..40]]; // Vincenzo Librandi, Nov 10 2014
    
  • Maple
    A001700 := n -> binomial(2*n+1,n+1); seq(A001700(n), n=0..20);
    A001700List := proc(m) local A, P, n; A := [1]; P := [1];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), 2*P[-1]]);
    A := [op(A), P[-1]] od; A end: A001700List(27); # Peter Luschny, Mar 24 2022
  • Mathematica
    Table[ Binomial[2n + 1, n + 1], {n, 0, 23}]
    CoefficientList[ Series[2/((Sqrt[1 - 4 x] + 1)*Sqrt[1 - 4 x]), {x, 0, 22}], x] (* Robert G. Wilson v, Aug 08 2011 *)
  • Maxima
    B(n,a,x):=coeff(taylor(exp(x*t)*(t/(exp(t)-1))^a,t,0,20),t,n)*n!;
    makelist((-1)^(n)*B(n,n+1,-n-1)/n!,n,0,10); /* Vladimir Kruchinin, Apr 06 2016 */
    
  • PARI
    a(n)=binomial(2*n+1,n+1)
    
  • PARI
    z='z+O('z^50); Vec((1/sqrt(1-4*z)-1)/(2*z)) \\ Altug Alkan, Oct 11 2015
    
  • Python
    from _future_ import division
    A001700_list, b = [], 1
    for n in range(10**3):
        A001700_list.append(b)
        b = b*(4*n+6)//(n+2) # Chai Wah Wu, Jan 26 2016
    
  • Sage
    [rising_factorial(n+1,n+1)/factorial(n+1) for n in (0..22)] # Peter Luschny, Nov 07 2011
    

Formula

a(n-1) = binomial(2*n, n)/2 = A000984(n)/2 = (2*n)!/(2*n!*n!).
D-finite with recurrence: a(0) = 1, a(n) = 2*(2*n+1)*a(n-1)/(n+1) for n > 0.
G.f.: (1/sqrt(1 - 4*x) - 1)/(2*x).
L.g.f.: log((1 - sqrt(1 - 4*x))/(2*x)) = Sum_{n >= 0} a(n)*x^(n+1)/(n+1). - Vladimir Kruchinin, Aug 10 2010
G.f.: 2F1([1, 3/2]; [2]; 4*x). - Paul Barry, Jan 23 2009
G.f.: 1/(1 - 2*x - x/(1 - x/(1 - x/(1 - x/(1 - ... (continued fraction). - Paul Barry, May 06 2009
G.f.: c(x)^2/(1 - x*c(x)^2), c(x) the g.f. of A000108. - Paul Barry, Sep 07 2009
O.g.f.: c(x)/sqrt(1 - 4*x) = (2 - c(x))/(1 - 4*x), with c(x) the o.g.f. of A000108. Added second formula. - Wolfdieter Lang, Sep 02 2012
Convolution of A000108 (Catalan) and A000984 (central binomial): Sum_{k=0..n} C(k)*binomial(2*(n-k), n-k), C(k) Catalan. - Wolfdieter Lang, Dec 11 1999
a(n) = Sum_{k=0..n} C(n+k, k). - Benoit Cloitre, Aug 20 2002
a(n) = Sum_{k=0..n} C(n, k)*C(n+1, k+1). - Benoit Cloitre, Oct 19 2002
a(n) = Sum_{k = 0..n+1} binomial(2*n+2, k)*cos((n - k + 1)*Pi). - Paul Barry, Nov 02 2004
a(n) = 4^n*binomial(n+1/2, n)/(n+1). - Paul Barry, May 10 2005
E.g.f.: Sum_{n >= 0} a(n)*x^(2*n + 1)/(2*n + 1)! = BesselI(1, 2*x). - Michael Somos, Jun 22 2005
E.g.f. in Maple notation: exp(2*x)*(BesselI(0, 2*x) + BesselI(1, 2*x)). Integral representation as n-th moment of a positive function on [0, 4]: a(n) = Integral_{x = 0..4} x^n * (x/(4 - x))^(1/2)/(2*Pi) dx, n >= 0. This representation is unique. - Karol A. Penson, Oct 11 2001
Narayana transform of [1, 2, 3, ...]. Let M = the Narayana triangle of A001263 as an infinite lower triangular matrix and V = the Vector [1, 2, 3, ...]. Then A001700 = M * V. - Gary W. Adamson, Apr 25 2006
a(n) = A122366(n,n). - Reinhard Zumkeller, Aug 30 2006
a(n) = C(2*n, n) + C(2*n, n-1) = A000984(n) + A001791(n). - Zerinvary Lajos, Jan 23 2007
a(n-1) = (n+1)*(n+2)*...*(2*n-1)/(n-1)! (product of n-1 consecutive integers, divided by (n-1)!). - Jonathan Vos Post, Apr 09 2007; [Corrected and shortened by Giovanni Ciriani, Mar 26 2019]
a(n-1) = (2*n - 1)!/(n!*(n - 1)!). - William A. Tedeschi, Feb 27 2008
a(n) = (2*n + 1)*A000108(n). - Paul Barry, Aug 21 2007
Binomial transform of A005773 starting (1, 2, 5, 13, 35, 96, ...) and double binomial transform of A001405. - Gary W. Adamson, Sep 01 2007
Row sums of triangle A132813. - Gary W. Adamson, Sep 01 2007
Row sums of triangle A134285. - Gary W. Adamson, Nov 19 2007
a(n) = 2*A000984(n) - A000108(n), that is, a(n) = 2*C(2*n, n) - n-th Catalan number. - Joseph Abate, Jun 11 2010
Conjectured: 4^n GaussHypergeometric(1/2,-n; 2; 1) -- Solution for the path which stays in the first and second quadrant. - Benjamin Phillabaum, Feb 20 2011
a(n)= Sum_{k=0..n} A038231(n,k) * (-1)^k * A000108(k). - Philippe Deléham, Nov 27 2009
Let A be the Toeplitz matrix of order n defined by: A[i,i-1] = -1, A[i,j] = Catalan(j-i), (i <= j), and A[i,j] = 0, otherwise. Then, for n >= 1, a(n) = (-1)^n * charpoly(A,-2). - Milan Janjic, Jul 08 2010
a(n) is the upper left term of M^(n+1), where M is the infinite matrix in which a column of (1,2,3,...) is prepended to an infinite lower triangular matrix of all 1's and the rest zeros, as follows:
1, 1, 0, 0, 0, ...
2, 1, 1, 0, 0, ...
3, 1, 1, 1, 0, ...
4, 1, 1, 1, 1, ...
...
Alternatively, a(n) is the upper left term of M^n where M is the infinite matrix:
3, 1, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, ...
...
- Gary W. Adamson, Jul 14 2011
a(n) = (n + 1)*hypergeom([-n, -n], [2], 1). - Peter Luschny, Oct 24 2011
a(n) = Pochhammer(n+1, n+1)/(n+1)!. - Peter Luschny, Nov 07 2011
E.g.f.: 1 + 6*x/(U(0) - 6*x); U(k) = k^2 + (4*x + 3)*k + 6*x + 2 - 2*x*(k + 1)*(k + 2)*(2*k + 5)/U(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2011
a(n) = 2*A000984(n) - A000108(n). [Abate & Whitt]
a(n) = 2^(2*n+1)*binomial(n+1/2, -1/2). - Peter Luschny, May 06 2014
For n > 1: a(n-1) = A166454(2*n, n), central terms in A166454. - Reinhard Zumkeller, Mar 04 2015
a(n) = 2*4^n*Gamma(3/2 + n)/(sqrt(Pi)*Gamma(2+n)). - Peter Luschny, Dec 14 2015
a(n) ~ 2*4^n*(1 - (5/8)/n + (73/128)/n^2 - (575/1024)/n^3 + (18459/32768)/n^4)/sqrt(n*Pi). - Peter Luschny, Dec 16 2015
a(n) = (-1)^(n)*B(n, n+1, -n-1)/n!, where B(n,a,x) is a generalized Bernoulli polynomial. - Vladimir Kruchinin, Apr 06 2016
a(n) = Gamma(2 + 2*n)/(n!*Gamma(2 + n)). Andres Cicuttin, Apr 06 2016
a(n) = (n + (n + 1))!/(Gamma(n)*Gamma(1 + n)*A002378(n)), for n > 0. Andres Cicuttin, Apr 07 2016
From Ilya Gutkovskiy, Jul 04 2016: (Start)
Sum_{n >= 0} 1/a(n) = 2*(9 + 2*sqrt(3)*Pi)/27 = A248179.
Sum_{n >= 0} (-1)^n/a(n) = 2*(5 + 4*sqrt(5)*arcsinh(1/2))/25 = 2*(5*A145433 - 1).
Sum_{n >= 0} (-1)^n*a(n)/n! = BesselI(2,2)*exp(-2) = A229020*A092553. (End)
Conjecture: a(n) = Sum_{k=2^n..2^(n+1)-1} A178244(k). - Mikhail Kurkov, Feb 20 2021
a(n-1) = 1 + (1/n)*Sum_{t=1..n/2} (2*cos((2*t-1)*Pi/(2*n)))^(2*n). - Greg Dresden, Oct 11 2022
a(n) = Product_{1 <= i <= j <= n} (i + j + 1)/(i + j - 1). Cf. A006013. - Peter Bala, Feb 21 2023
Sum_{n >= 0} a(n)*x^(n+1)/(n+1) = x + 3*x^2/2 + 10*x^3/3 + 35*x^4/4 + ... = the series reversion of exp(-x)*(1 - exp(-x)). - Peter Bala, Sep 06 2023

Extensions

Name corrected by Paul S. Coombes, Jan 11 2012
Name corrected by Robert Tanniru, Feb 01 2014

A008459 Square the entries of Pascal's triangle.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 16, 36, 16, 1, 1, 25, 100, 100, 25, 1, 1, 36, 225, 400, 225, 36, 1, 1, 49, 441, 1225, 1225, 441, 49, 1, 1, 64, 784, 3136, 4900, 3136, 784, 64, 1, 1, 81, 1296, 7056, 15876, 15876, 7056, 1296, 81, 1, 1, 100, 2025, 14400, 44100, 63504, 44100, 14400, 2025, 100, 1
Offset: 0

Views

Author

Keywords

Comments

Number of lattice paths from (0, 0) to (n, n) with steps (1, 0) and (0, 1), having k right turns. - Emeric Deutsch, Nov 23 2003
Product of A007318 and A105868. - Paul Barry, Nov 15 2005
Number of partitions that fit in an n X n box with Durfee square k. - Franklin T. Adams-Watters, Feb 20 2006
From Peter Bala, Oct 23 2008: (Start)
Narayana numbers of type B. Row n of this triangle is the h-vector of the simplicial complex dual to an associahedron of type B_n (a cyclohedron) [Fomin & Reading, p. 60]. See A063007 for the corresponding f-vectors for associahedra of type B_n. See A001263 for the h-vectors for associahedra of type A_n. The Hilbert transform of this triangular array is A108625 (see A145905 for the definition of this term).
Let A_n be the root lattice generated as a monoid by {e_i - e_j: 0 <= i, j <= n + 1}. Let P(A_n) be the polytope formed by the convex hull of this generating set. Then the rows of this array are the h-vectors of a unimodular triangulation of P(A_n) [Ardila et al.]. A063007 is the corresponding array of f-vectors for these type A_n polytopes. See A086645 for the array of h-vectors for type C_n polytopes and A108558 for the array of h-vectors associated with type D_n polytopes.
(End)
The n-th row consists of the coefficients of the polynomial P_n(t) = Integral_{s = 0..2*Pi} (1 + t^2 - 2*t*cos(s))^n/Pi/2 ds. For example, when n = 3, we get P_3(t) = t^6 + 9*t^4 + 9*t^2 + 1; the coefficients are 1, 9, 9, 1. - Theodore Kolokolnikov, Oct 26 2010
Let E(y) = Sum_{n >= 0} y^n/n!^2 = BesselJ(0, 2*sqrt(-y)). Then this triangle is the generalized Riordan array (E(y), y) with respect to the sequence n!^2 as defined in Wang and Wang. - Peter Bala, Jul 24 2013
From Colin Defant, Sep 16 2018: (Start)
Let s denote West's stack-sorting map. T(n,k) is the number of permutations pi of [n+1] with k descents such that s(pi) avoids the patterns 132, 231, and 321. T(n,k) is also the number of permutations pi of [n+1] with k descents such that s(pi) avoids the patterns 132, 312, and 321.
T(n,k) is the number of permutations of [n+1] with k descents that avoid the patterns 1342, 3142, 3412, and 3421. (End)
The number of convex polyominoes whose smallest bounding rectangle has size (k+1)*(n+1-k) and which contain the lower left corner of the bounding rectangle (directed convex polyominoes). - Günter Rote, Feb 27 2019
Let P be the poset [n] X [n] ordered by the product order. T(n,k) is the number of antichains in P containing exactly k elements. Cf. A063746. - Geoffrey Critzer, Mar 28 2020

Examples

			Pascal's triangle begins
  1
  1  1
  1  2   1
  1  3   3   1
  1  4   6   4   1
  1  5  10  10   5   1
  1  6  15  20  15   6   1
  1  7  21  35  35  21   7   1
...
so the present triangle begins
  1
  1   1
  1   4    1
  1   9    9     1
  1  16   36    16     1
  1  25  100   100    25    1
  1  36  225   400   225   36   1
  1  49  441  1225  1225  441  49   1
...
		

References

  • T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Chapter 12.
  • J. Riordan, An introduction to combinatorial analysis, Dover Publications, Mineola, NY, 2002, page 191, Problem 15. MR1949650
  • P. G. Tait, On the Linear Differential Equation of the Second Order, Proceedings of the Royal Society of Edinburgh, 9 (1876), 93-98 (see p. 97) [From Tom Copeland, Sep 09 2010, vol number corrected Sep 10 2010]

Crossrefs

Row sums are in A000984. Columns 0-3 are A000012, A000290, A000537, A001249.
Family of polynomials (see A062145): this sequence (c=1), A132813 (c=2), A062196 (c=3), A062145 (c=4), A062264 (c=5), A062190 (c=6).
Cf. A007318, A055133, A116647, A001263, A086645, A063007, A108558, A108625 (Hilbert transform), A145903, A181543, A086645 (logarithmic derivative), A105868 (inverse binomial transform), A093118.

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],k->Binomial(n,k)^2))); # Muniru A Asiru, Mar 30 2018
    
  • Magma
    /* As triangle */ [[Binomial(n, k)^2: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Dec 15 2016
    
  • Maple
    seq(seq(binomial(n, k)^2, k=0..n), n=0..10);
  • Mathematica
    Table[Binomial[n, k]^2, {n, 0, 11}, {k, 0, n}]//Flatten (* Alonso del Arte, Dec 08 2013 *)
  • Maxima
    create_list(binomial(n,k)^2,n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
    
  • Maxima
    T(n,k):=if n=k then 1 else if k=0 then 1 else T(n-1,k)*(n+k)/(n-k)+T(n-1,k-1); /* Vladimir Kruchinin, Oct 18 2014 */
    
  • Maxima
    A(x,y):=1/sqrt(1-2*x-2*x*y+x^2-2*x^2*y+x^2*y^2);
    taylor(x*A(x,y)+x*y*A(x,y)+sqrt(1+4*x^2*y*A(x,y)^2),x,0,7,y,0,7); /* Vladimir Kruchinin, Oct 23 2020 */
    
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, binomial(n, k)^2)}; /* Michael Somos, May 03 2004 */
    
  • PARI
    {T(n,k)=polcoeff(polcoeff(sum(m=0,n,(2*m)!/m!^2*x^(2*m)*y^m/(1-x-x*y+x*O(x^n))^(2*m+1)),n,x),k,y)} \\ Paul D. Hanna, Oct 31 2010
    
  • Python
    def A008459(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),n-comb(r+1,2))**2 # Chai Wah Wu, Nov 12 2024

Formula

T(n,k) = A007318(n,k)^2. - Sean A. Irvine, Mar 29 2018
E.g.f.: exp((1+y)*x)*BesselI(0, 2*sqrt(y)*x). - Vladeta Jovovic, Nov 17 2003
G.f.: 1/sqrt(1-2*x-2*x*y+x^2-2*x^2*y+x^2*y^2); g.f. for row n: (1-t)^n P_n[(1+t)/(1-t)] where the P_n's are the Legendre polynomials. - Emeric Deutsch, Nov 23 2003 [The original version of the bivariate g.f. has been modified with the roles of x and y interchanged so that now x corresponds to n and y to k. - Petros Hadjicostas, Oct 22 2017]
G.f. for column k is Sum_{j = 0..k} C(k, j)^2*x^(k+j)/(1 - x)^(2*k+1). - Paul Barry, Nov 15 2005
Column k has g.f. (x^k)*Legendre_P(k, (1+x)/(1-x))/(1 - x)^(k+1) = (x^k)*Sum_{j = 0..k} C(k, j)^2*x^j/(1 - x)^(2*k+1). - Paul Barry, Nov 19 2005
Let E be the operator D*x*D, where D denotes the derivative operator d/dx. Then (1/n!^2) * E^n(1/(1 - x)) = (row n generating polynomial)/(1 - x)^(2*n+1) = Sum_{k >= 0} binomial(n+k, k)^2*x^k. For example, when n = 3 we have (1/3!)^2*E^3(1/(1 - x)) = (1 + 9*x + 9*x^2 + x^3)/(1 - x)^7 = (1/3!)^2 * Sum_{k >= 0} ((k+1)*(k+2)*(k+3))^2*x^k. - Peter Bala, Oct 23 2008
G.f.: A(x, y) = Sum_{n >= 0} (2*n)!/n!^2 * x^(2*n)*y^n/(1 - x - x*y)^(2*n+1). - Paul D. Hanna, Oct 31 2010
From Peter Bala, Jul 24 2013: (Start)
Let E(y) = Sum_{n >= 0} y^n/n!^2 = BesselJ(0, 2*sqrt(-y)). Generating function: E(y)*E(x*y) = 1 + (1 + x)*y + (1 + 4*x + x^2)*y^2/2!^2 + (1 + 9*x + 9*x^2 + x^3)*y^3/3!^2 + .... Cf. the unsigned version of A021009 with generating function exp(y)*E(x*y).
The n-th power of this array has the generating function E(y)^n*E(x*y). In particular, the matrix inverse A055133 has the generating function E(x*y)/E(y). (End)
T(n,k) = T(n-1,k)*(n+k)/(n-k) + T(n-1,k-1), T(n,0) = T(n,n) = 1. - Vladimir Kruchinin, Oct 18 2014
Observe that the recurrence T(n,k) = T(n-1,k)*(n+k)/(n-k) - T(n-1,k-1), for n >= 2 and 1 <= k < n, with boundary conditions T(n,0) = T(n,n) = 1 gives Pascal's triangle A007318. - Peter Bala, Dec 21 2014
n-th row polynomial R(n, x) = [z^n] (1 + (1 + x)*z + x*z^2)^n. Note that 1/n*[z^(n-1)] (1 + (1 + x)*z + x*z^2)^n gives the row polynomials of A001263. - Peter Bala, Jun 24 2015
Binomial transform of A105868. If G(x,t) = 1/sqrt(1 - 2*(1 + t)*x + (1 - t)^2*x^2) denotes the o.g.f. of this array then 1 + x*d/dx log(G(x,t)) = 1 + (1 + t)*x + (1 + 6*t + t^2)*x^2 + ... is the o.g.f. for A086645. - Peter Bala, Sep 06 2015
T(n,k) = Sum_{i=0..n} C(n-i,k)*C(n,i)*C(n+i,i)*(-1)^(n-i-k). - Vladimir Kruchinin, Jan 14 2018
G.f. satisfies A(x,y) = x*A(x,y)+x*y*A(x,y)+sqrt(1+4*x^2*y*A(x,y)^2). - Vladimir Kruchinin, Oct 23 2020
G.f. satisfies the differential equation y * d^2(A(x,y))/dy^2 - x^2 * d^2(x*A(x,y))/dx^2 + 2*x^2* A(x,y)^3 = 0. - Sergii Voloshyn, Mar 07 2025
T(n,k) = Sum_{i=0..n} C(2*n+1,i)*C(n+k-i,n)^2*(-1)^i. - Natalia L. Skirrow, Apr 14 2025

A023998 Number of block permutations on an n-set which are uniform, i.e., corresponding blocks have same size.

Original entry on oeis.org

1, 1, 3, 16, 131, 1496, 22482, 426833, 9934563, 277006192, 9085194458, 345322038293, 15024619744202, 740552967629021, 40984758230303149, 2527342803112928081, 172490568947825135203, 12952575262915522547136, 1064521056888312620947794, 95305764621957309071404877
Offset: 0

Views

Author

Des FitzGerald (D.FitzGerald(AT)utas.edu.au)

Keywords

Comments

Number of games of simple patience with n cards. Take a shuffled deck of n cards labeled 1..n; as each card is dealt it is placed either on a higher-numbered card or starts a new pile to the right. Cards are not moved once they are placed. Suggested by reading Aldous and Diaconis. - N. J. A. Sloane, Dec 19 1999
Number of set partitions of [2n] such that within each block the numbers of odd and even elements are equal. a(2) = 3: 1234, 12|34, 14|23; a(3) = 16: 123456, 1234|56, 1236|45, 1245|36, 1256|34, 12|3456, 12|34|56, 12|36|45, 1346|25, 1456|23, 14|2356, 14|23|56, 16|2345, 16|23|45, 14|25|36, 16|25|34. - Alois P. Heinz, Jul 14 2016

Examples

			For n=3 there are 25 block permutations, of which 9 of the form ({1} maps to {1,2}; {2,3} maps to {3}), are not uniform. Hence a(3) = 25 - 9 = 16.
Alternatively, for n=3 the 6 permutations of 3 cards produce 16 games, as follows: 123 -> {1,2,3}; 132 -> {1,32}, {1,3,2}; 213 -> {21,3}, {2,1,3}; 231 -> {21,3}, {2,31}, {2,3,1}; 312 -> {31,2}, {32,1}, {3,1,2}; 321 -> {321}, {32,1}, {31,2}, {3,21}, {3,2,1}.
G.f.: A(x) = 1 + x + 3*x^2/2!^2 + 16*x^3/3!^2 + 131*x^4/4!^2 + 1496*x^5/5!^2 + ...
log(A(x)) = x + x^2/2!^2 + x^3/3!^2 + x^4/4!^2 + x^5/5!^2 + ...
		

Crossrefs

Cf. A132813.
Column k=2 of A275043.
Main diagonal of A321296 and of A322670.

Programs

  • Haskell
    a023998 n = a023998_list !! n
    a023998_list = 1 : f 2 [1] a132813_tabl where
       f x ys (zs:zss) = y : f (x + 1) (ys ++ [y]) zss where
                         y = sum $ zipWith (*) ys zs
    -- Reinhard Zumkeller, Apr 04 2014
  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-i)*binomial(n-1, i-1)/i!, i=1..n))
        end:
    a:= n-> b(n)*n!:
    seq(a(n), n=0..25);  # Alois P. Heinz, May 11 2016
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Binomial[n-1, k] a[k], {k, 0, n-1}];
    Array[a, 25, 0] (* Jean-François Alcover, Jul 28 2016 *)
    nmax = 20; CoefficientList[Series[E^(-1 + BesselI[0, 2*Sqrt[x]]), {x, 0, nmax}], x]*Range[0, nmax]!^2 (* Vaclav Kotesovec, Jun 09 2019 *)
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,binomial(n,k)*binomial(n-1,k)*a(k))) \\ Paul D. Hanna, Aug 15 2007
    
  • PARI
    {a(n)=n!^2*polcoeff(exp(sum(m=1, n, x^m/m!^2)+x*O(x^n)), n)} /* Paul D. Hanna */
    
  • PARI
    N=66; x='x+O('x^N); /* that many terms */
    Vec(serlaplace(serlaplace(exp(sum(n=1, N, x^n/n!^2))))) /* show terms */
    /* Joerg Arndt, Jul 12 2011 */
    
  • PARI
    v=vector(N); v[1]=1;
    for (n=1,N-1, v[n+1]=sum(k=0,n-1, binomial(n,k)*binomial(n-1,k)*v[k+1]) );
    v /* show terms */
    /* Joerg Arndt, Jul 12 2011 */
    

Formula

a(n) = Sum_{k=0..n-1} C(n,k)*C(n-1,k)*a(k) for n>0 with a(0)=1. - Paul D. Hanna, Aug 15 2007
G.f.: Sum_{n>=0} a(n)*x^n/n!^2 = exp( Sum_{n>=1} x^n/n!^2 ). [Paul D. Hanna, Jan 04 2011; merged from duplicate entry A179119]
Row sums of A061691.
Generating function: Let J(z) = Sum_{n>=0} z^n/n!^2. Then exp(J(z)-1) = Sum_{n>=0} a(n)*z^n/n!^2 = 1 + z + 3*z^2/2!^2 + 16*z^3/3!^2 + .... - Peter Bala, Jul 11 2011

Extensions

More terms from Vladeta Jovovic, Sep 03 2002

A062190 Coefficient triangle of certain polynomials N(5; m,x).

Original entry on oeis.org

1, 1, 6, 1, 14, 21, 1, 24, 84, 56, 1, 36, 216, 336, 126, 1, 50, 450, 1200, 1050, 252, 1, 66, 825, 3300, 4950, 2772, 462, 1, 84, 1386, 7700, 17325, 16632, 6468, 792, 1, 104, 2184, 16016, 50050, 72072, 48048, 13728, 1287, 1, 126, 3276, 30576, 126126, 252252, 252252, 123552, 27027, 2002
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Comments

The e.g.f. of the m-th (unsigned) column sequence without leading zeros of the generalized (a=5) Laguerre triangle L(5; n+m,m)= A062138(n+m,m), n >= 0, is N(5; m,x)/(1-x)^(2*(m+3)), with the row polynomials N(5; m,x) := Sum_{k=0..m} a(m,k)*x^k.

Examples

			Triangle begins as:
  1;
  1,   6;
  1,  14,   21;
  1,  24,   84,    56;
  1,  36,  216,   336,    126;
  1,  50,  450,  1200,   1050,    252;
  1,  66,  825,  3300,   4950,   2772,     462;
  1,  84, 1386,  7700,  17325,  16632,    6468,    792;
  1, 104, 2184, 16016,  50050,  72072,   48048,  13728,   1287;
  1, 126, 3276, 30576, 126126, 252252,  252252, 123552,  27027,  2002;
  1, 150, 4725, 54600, 286650, 756756, 1051050, 772200, 289575, 50050, 3003;
		

Crossrefs

Family of polynomials (see A062145): A008459 (c=1), A132813 (c=2), A062196 (c=3), A062145 (c=4), A062264 (c=5), this sequence (c=6).
Columns k: A028557 (k=1), A104676 (k=2), A104677 (k=3), A104678 (k=4), A104679 (k=5), A104680 (k=6).
Diagonals: A000389 (k=n), A027818 (k=n-1), A104670 (k=n-2), A104671 (k=n-3), A104672 (k=n-4), A104673 (k=n-5), A104674 (k=n-6).
Cf. A003516 (row sums), A113894 (main diagonal).

Programs

  • Magma
    A062190:= func< n,k | Binomial(n,k)*Binomial(n+5,k) >;
    [A062190(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 28 2025
    
  • Maple
    A062190 := proc(m,k)
        add( (binomial(m, j)*(2*m+5-j)!/((m+5)!*(m-j)!))*(x^(m-j))*(1-x)^j,j=0..m) ;
        coeftayl(%,x=0,k) ;
    end proc: # R. J. Mathar, Nov 29 2015
  • Mathematica
    NN[5, m_, x_] := x^m*(2*m+5)!*Hypergeometric2F1[-m, -m, -2*m-5, (x-1)/x]/((m+5)!*m!); Table[CoefficientList[NN[5, m, x], x], {m, 0, 8}] // Flatten (* Jean-François Alcover, Sep 18 2013 *)
    A062190[n_,k_]:= Binomial[n,k]*Binomial[n+5,k];
    Table[A062190[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 28 2025 *)
  • SageMath
    def A062190(n,k): return binomial(n,k)*binomial(n+5,k)
    print(flatten([[A062190(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Feb 28 2025

Formula

T(m, k) = [x^k]N(5; m, x), with N(5; m, x) = ((1-x)^(2*(m+3)))*(d^m/dx^m)(x^m/(m!*(1-x)^(m+6))).
N(5; m, x) = Sum_{j=0..m} ((binomial(m, j)*(2*m+5-j)!/((m+5)!*(m-j)!))*(x^(m-j))*(1-x)^j).
N(5; m, x)= x^m*(2*m+5)! * 2F1(-m, -m; -2*m-5; (x-1)/x)/((m+5)!*m!). - Jean-François Alcover, Sep 18 2013
T(n, k) = binomial(n, k)*binomial(n+5, k). - G. C. Greubel, Feb 28 2025

A103371 Number triangle T(n,k) = C(n,n-k)*C(n+1,n-k).

Original entry on oeis.org

1, 2, 1, 3, 6, 1, 4, 18, 12, 1, 5, 40, 60, 20, 1, 6, 75, 200, 150, 30, 1, 7, 126, 525, 700, 315, 42, 1, 8, 196, 1176, 2450, 1960, 588, 56, 1, 9, 288, 2352, 7056, 8820, 4704, 1008, 72, 1, 10, 405, 4320, 17640, 31752, 26460, 10080, 1620, 90, 1, 11, 550, 7425, 39600, 97020
Offset: 0

Views

Author

Paul Barry, Feb 03 2005

Keywords

Comments

Columns include A000027, A002411, A004302, A108647, A134287. Row sums are C(2n+1,n+1) or A001700.
T(n-1,k-1) is the number of ways to put n identical objects into k of altogether n distinguishable boxes. See the partition array A035206 from which this triangle arises after summing over all entries related to partitions with fixed part number k.
T(n, k) is also the number of order-preserving full transformations (of an n-chain) of height k (height(alpha) = |Im(alpha)|). - Abdullahi Umar, Oct 02 2008
The o.g.f. of the (n+1)-th diagonal is given by G(n, x) = (n+1)*Sum_{k=1..n} A001263(n, k)*x^(k-1) / (1 - x)^(2*n+1), for n >= 1 and for n = 0 it is G(0, x) = 1/(1-x). - Wolfdieter Lang, Jul 31 2017

Examples

			The triangle T(n, k) begins:
n\k  0   1    2     3     4     5     6    7  8 9 ...
0:   1
1:   2   1
2:   3   6    1
3:   4  18   12     1
4:   5  40   60    20     1
5:   6  75  200   150    30     1
6:   7 126  525   700   315    42     1
7:   8 196 1176  2450  1960   588    56    1
8:   9 288 2352  7056  8820  4704  1008   72  1
9:  10 405 4320 17640 31752 26460 10080 1620 90 1
...  reformatted. - _Wolfdieter Lang_, Jul 31 2017
From _R. J. Mathar_, Mar 29 2013: (Start)
The matrix inverse starts
       1;
      -2,       1;
       9,      -6,      1;
     -76,      54,    -12,      1;
    1055,    -760,    180,    -20,   1;
  -21906,   15825,  -3800,    450, -30,   1;
  636447, -460026, 110775, -13300, 945, -42, 1; (End)
O.g.f. of 4th diagonal [4, 40,200, ...] is G(3, x) = 4*(1 + 3*x + x^2)/(1 - x)^7, from the n = 3 row [1, 3, 1] of A001263. See a comment above. - _Wolfdieter Lang_, Jul 31 2017
		

Crossrefs

Cf. A007318, A000894 (central terms), A132813 (mirrored).

Programs

  • Haskell
    a103371 n k = a103371_tabl !! n !! k
    a103371_row n = a103371_tabl !! n
    a103371_tabl = map reverse a132813_tabl
    -- Reinhard Zumkeller, Apr 04 2014
    
  • Magma
    /* As triangle */ [[Binomial(n,n-k)*Binomial(n+1,n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 01 2017
    
  • Maple
    A103371 := (n,k) -> binomial(n,k)^2*(n+1)/(k+1);
    seq(print(seq(A103371(n, k), k=0..n)), n=0..7); # Peter Luschny, Oct 19 2011
  • Mathematica
    Flatten[Table[Binomial[n,n-k]Binomial[n+1,n-k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, May 26 2014 *)
    CoefficientList[Series[Series[E^(x(1+y))(BesselI[0,2*x*Sqrt[y]]+BesselI[1,2*x*Sqrt[y]]/Sqrt[y]),{x,0,8}],{y,0,8}],{x,y}]*Range[0,8]! (* Natalia L. Skirrow, Apr 14 2025 *)
  • Maxima
    create_list(binomial(n,k)*binomial(n+1,k+1),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
    
  • PARI
    for(n=0,10, for(k=0,n, print1(binomial(n,k)*binomial(n+1,k+1), ", "))) \\ G. C. Greubel, Nov 09 2018

Formula

Number triangle T(n, k) = C(n, n-k)*C(n+1, n-k) = C(n, k)*C(n+1, k+1); Column k of this triangle has g.f. Sum_{j=0..k} (C(k, j)*C(k+1, j) * x^(k+j))/(1-x)^(2*k+2); coefficients of the numerators are the rows of the reverse triangle C(n, k)*C(n+1, k).
T(n,k) = C(n, k)*Sum_{j=0..(n-k)} C(n-j, k). - Paul Barry, Jan 12 2006
T(n,k) = (n+1-k)*N(n+1,k+1), with N(n,k):=A001263(n,k), the Narayana triangle (with offset [1,1]).
O.g.f.: ((1-(1-y)*x)/sqrt((1-(1+y)*x)^2-4*x^2*y) -1)/2, (from o.g.f. of A001263, Narayana triangle). - Wolfdieter Lang, Nov 13 2007
From Peter Bala, Jan 24 2008: (Start)
Matrix product of A007318 and A122899.
O.g.f. for row n: (1-x)^n*P(n,1,0,(1+x)/(1-x)) = 1/(2*x)*(1-x)^(n+1)*( Legendre_P(n+1,(1+x)/(1-x)) - Legendre_P(n,(1+x)/(1-x)) ), where P(n,a,b,x) denotes the Jacobi polynomial.
O.g.f. for column k: x^k/(1-x)^(k+2)*P(k,0,1,(1+x)/(1-x)). Compare with A008459. (End)
Let S(n,k) = binomial(2*n,n)^(k+1)*((n+1)^(k+1)-n^(k+1))/(n+1)^k. Then T(2*n,n) = S(n,1). (Cf. A194595, A197653, A197654). - Peter Luschny, Oct 20 2011
T(n,k) = A003056(n+1,k+1)*C(n,k)^2/(k+1). - Peter Luschny, Oct 29 2011
T(n,k) = A007318(n, k)*A135278(n, k), n >= k >= 0. - Wolfdieter Lang, Jul 31 2017
From Natalia L. Skirrow, Apr 14 2025: (Start)
T(n,k) = A008459(n,k) + n*N(n,k+1).
E.g.f.: e^(x*(1+y))*(I_0(2*x*sqrt(y)) + I_1(2*x*sqrt(y))/sqrt(y)), where I_n is the modified Bessel function of the first kind. (The I_0 contributes A008459(n,k), the I_1 contributes n*N(n,k+1))
O.g.f. for row n: (n+1)*2F1(-n,-n;2;y) = (n+1)*2F1(2+n,2+n;2;y)*(1-y)^(2*(n+1)) (by Euler's hypergeometric transformation); (n+1)*2F1(2+n,2+n;2;y) is the o.g.f. for row n of (k+n+1)!^2/(k!*(k+1)!*n!*(n+1)!), which is column n+1 of A132812.
O.g.f. for column k: 2F1(1+k,2+k;1;x)*x^k = 2F1(-k,-1-k;1;x)*x^k/(1-x)^(2+2*k). 2F1(-k,-1-k;1;x) is the kth row of A132813, the reflection of the kth row of this triangle.
O.g.f. for diagonal d (beginning at a(d,0)): (d+1)*x^d*2F1(d+1,d+2;2;x*y). 2F1(d+1,d+2;2;x) = 2F1(1-d,-d;2;x)/(1-x)^(2*d+1), numerator being the o.g.f. of row d of the Narayana triangle.
These respectively yield:
T(n,k) = Sum_{i=0..n+k} C(2*(n+1),i)*(-1)^i*A132812(n+1+k-i,n+1),
T(d+k,k) = Sum_{i=0..k} C(d-i+1+2*k,d-i)*T(k,k-i),
T(d+k,k) = Sum_{i=0..d} C(k-i + 2*d,k-i)*N(d,i+1)*(d+1).
E.g.f. for column k: 1F1(2+k;1;x)*x^k/k!.
E.g.f. for diagonal d: (d+1)*x^d*1F1(d+2;2;x*y)/d!. (End)

A062196 Triangle read by rows, T(n, k) = binomial(n, k)*binomial(n + 2, k).

Original entry on oeis.org

1, 1, 3, 1, 8, 6, 1, 15, 30, 10, 1, 24, 90, 80, 15, 1, 35, 210, 350, 175, 21, 1, 48, 420, 1120, 1050, 336, 28, 1, 63, 756, 2940, 4410, 2646, 588, 36, 1, 80, 1260, 6720, 14700, 14112, 5880, 960, 45, 1, 99, 1980, 13860, 41580, 58212, 38808, 11880, 1485, 55
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Comments

Also the coefficient triangle of certain polynomials N(2; m,x) := Sum_{k=0..m} T(m,k)*x^k. The e.g.f. of the m-th (unsigned) column sequence without leading zeros of the generalized (a=2) Laguerre triangle L(2; n+m,m) = A062139(n+m,m), n >= 0, is N(2; m,x)/(1-x)^(3+2*m), with the row polynomials N(2; m,x).

Examples

			Triangle starts:
  n\k 0...1.....2......3..... 4.....;
  [0] 1;
  [1] 1,  3;
  [2] 1,  8,    6;
  [3] 1, 15,   30,    10;
  [4] 1, 24,   90,    80,    15;
  [5] 1, 35,  210,   350,   175,    21;
  [6] 1, 48,  420,  1120,  1050,   336,    28;
  [7] 1, 63,  756,  2940,  4410,  2646,   588,    36;
  [8] 1, 80, 1260,  6720, 14700, 14112,  5880,   960,   45;
  [9] 1, 99, 1980, 13860, 41580, 58212, 38808, 11880, 1485, 55.
		

Crossrefs

Family of polynomials (see A062145): A008459 (c=1), A132813 (c=2), this sequence (c=3), A062145 (c=4), A062264 (c=5), A062190 (c=6).
Sums include: A001791 (row), (-1)^n*A089849(n+1) (alternating sign row).
Diagonals: A000217 (k=n), A002417 (k=n-1), A001297 (k=n-2), A105946 (k=n-3), A105947 (k=n-4), A105948 (k=n-5), A107319 (k=n-6).
Columns: A005563 (k=1), A033487 (k=2), A027790 (k=3), A107395 (k=4), A107396 (k=5), A107397 (k=6), A107398 (k=7), A107399 (k=8).

Programs

  • Magma
    A062196:= func;
    [A062196(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 21 2025
    
  • Maple
    T := (n, k) -> binomial(n, k)*binomial(n + 2, k);
    seq(seq(T(n, k), k=0..n), n=0..9); # Peter Luschny, Sep 30 2021
  • Mathematica
    A062196[n_, k_]:= Binomial[n, k]*Binomial[n+2, k];
    Table[A062196[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 21 2025 *)
  • SageMath
    def A062196(n,k): return binomial(n,k)*binomial(n+2,k)
    print(flatten([[A062196(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Feb 21 2025

Formula

T(m, k) = [x^k] N(2; m, x), where N(2; m, x) = ((1-x)^(3+2*m))*(d^m/dx^m)(x^m/(m!*(1-x)^(m+3))).
N(2; m, x) = Sum_{j=0..m} ((binomial(m, j)*(2*m+2-j)!/((m+2)!*(m-j)!)*(x^(m-j)))*(1-x)^j).
T(n,m) = binomial(n, m)*(binomial(n+1, m) + binomial(n+1, m-1)). - Vladimir Kruchinin, Apr 06 2018
From G. C. Greubel, Feb 21 2025: (Start)
T(2*n, n) = (n+1)^2*A000108(n)*A000108(n+1).
T(2*n-1, n) = (4*n^2 - 1)*A000108(n-1)*A000108(n), n >= 1.
T(2*n+1, n) = (1/2)*binomial(n+2,2)*A000108(n+1)*A000108(n+2). (End)

Extensions

New name by Peter Luschny, Sep 30 2021

A062145 Triangle read by rows: T(n, k) = [z^k] P(n, z) where P(n, z) = Sum_{k=0..n} binomial(n, k) * Pochhammer(n - k + c, k) * z^k / k! and c = 4.

Original entry on oeis.org

1, 1, 4, 1, 10, 10, 1, 18, 45, 20, 1, 28, 126, 140, 35, 1, 40, 280, 560, 350, 56, 1, 54, 540, 1680, 1890, 756, 84, 1, 70, 945, 4200, 7350, 5292, 1470, 120, 1, 88, 1540, 9240, 23100, 25872, 12936, 2640, 165, 1, 108, 2376, 18480, 62370, 99792, 77616, 28512, 4455, 220
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Comments

Coefficient triangle of certain polynomials N(3; m,x).

Examples

			As a square array:
    1,    1,     1,     1,     1,     1,    1,  1, ... A000012;
    4,   10,    18,    28,    40,    54,   70, 88, ... A028552;
   10,   45,   126,   280,   540,   945, 1540, ....... A105938;
   20,  140,   560,  1680,  4200,  9240, ............. A105939;
   35,  350,  1890,  7350, 23100, 62370, ............. A027803;
   56,  756,  5292, 25872, 99792, .................... A105940;
   84, 1470, 12936, 77616, ........................... A105942;
  120, 2640, 28512, .................................. A105943;
  165, 4455, 57015, .................................. A105944;
  ....;
As a triangle:
  1;
  1,   4;
  1,  10,   10;
  1,  18,   45,    20;
  1,  28,  126,   140,    35;
  1,  40,  280,   560,   350,    56;
  1,  54,  540,  1680,  1890,   756,    84;
  1,  70,  945,  4200,  7350,  5292,  1470,   120;
  1,  88, 1540,  9240, 23100, 25872, 12936,  2640,  165;
  1, 108, 2376, 18480, 62370, 99792, 77616, 28512, 4455, 220;
  ....;
		

Crossrefs

Family of polynomials: A008459 (c=1), A132813 (c=2), A062196 (c=3), this sequence (c=4), A062264 (c=5), A062190 (c=6).
Columns: A028552 (k=1), A105938 (k=2), A105939 (k=3), A027803 (k=4), A105940 (k=5), A105942 (k=6), A105943 (k=7), A105944 (k=8).
Diagonals: A000292 (k=n), A027800 (k=n-1), A107417 (k=n-2), A107418 (k=n-3), A107419 (k=n-4), A107420 (k=n-5), A107421 (k=n-6), A107422 (k=n-7).
Sums: A002054 (row).

Programs

  • Magma
    A062145:= func< n,k | Binomial(n,k)*Binomial(n+3,k) >;
    [A062145(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 07 2025
    
  • Mathematica
    NN[3, m_, x_] := x^m*(2*m+3)!*Hypergeometric2F1[-m, -m, -2*m-3, (x-1)/x]/( (m+3)!*m!); Table[CoefficientList[NN[3, m, x], x], {m, 0, 9}] // Flatten (* Jean-François Alcover, Sep 18 2013 *)
    P[c_, n_, z_] := Sum[Binomial[n, k] Pochhammer[n-k+c, k] z^k /k!, {k,0,n}];
    CL[c_] := Table[CoefficientList[P[c, n, z], z], {n, 0, 5}] // TableForm
    CL[4]  (* Peter Luschny, Feb 12 2024 *)
    A062145[n_,k_]:= Binomial[n,k]*Binomial[n+3,k];
    Table[A062145[n,k], {n,0,12},{k,0,n}]//Flatten (* G. C. Greubel, Mar 07 2025 *)
  • SageMath
    def A062145(n,k): return binomial(n,k)*binomial(n+3,k)
    print(flatten([[A062145(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Mar 07 2025

Formula

The e.g.f. of the m-th (unsigned) column sequence without leading zeros of the generalized (a=3) Laguerre triangle L(3; n+m, m) = A062137(n+m, m), n >= 0, is N(3; m, x)/(1-x)^(2*(m+2)), with the row polynomials N(3; m, x) := Sum_{k=0..m} a(m, k)*x^k.
N(3; m, x) := ((1-x)^(2*(m+2)))*(d^m/dx^m)(x^m/(m!*(1-x)^(m+4))); a(m, k) = [x^k]N(3; m, x).
N(3; m, x) = Sum_{j=0..m} ((binomial(m, j)*(2*m+3-j)!/((m+3)!*(m-j)!))*(x^(m-j))*(1-x)^j).
N(3; m, x)= x^m*(2*m+3)! * 2F1(-m, -m; -2*m-3; (x-1)/x)/((m+3)!*m!). - Jean-François Alcover, Sep 18 2013
From G. C. Greubel, Mar 07 2025 : (Start)
T(n, k) = binomial(n, k)*binomial(n+3, k).
T(2*n, n) = (1/2)*(n+1)^2*A000108(n)*A000108(n+2).
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^floor((n+2)/2)*(A047074(n+3) - A047074(n+ 2)). (End)

Extensions

New name by Peter Luschny, Feb 12 2024
More terms from G. C. Greubel, Mar 07 2025

A000894 a(n) = (2*n)!*(2*n+1)! /((n+1)! *n!^3).

Original entry on oeis.org

1, 6, 60, 700, 8820, 116424, 1585584, 22084920, 312869700, 4491418360, 65166397296, 953799087696, 14062422446800, 208618354980000, 3111393751416000, 46619049708716400, 701342468412012900
Offset: 0

Views

Author

Keywords

Comments

This sequence is one half of the odd part of the bisection of A241530. The even part is given in A002894. - Wolfdieter Lang, Sep 06 2016

Examples

			G.f. = 1 + 6*x + 60*x^2 + 700*x^3 + 8820*x^4 + 116424*x^5 + ...
		

References

  • E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 96.

Crossrefs

Programs

  • Haskell
    a000894 n = a132813 (2 * n) n  -- Reinhard Zumkeller, Apr 04 2014
    
  • Magma
    [Factorial(2*n)*Factorial(2*n+1) /(Factorial(n+1)* Factorial(n)^3): n in [0..20]]; // Vincenzo Librandi, Oct 25 2011
    
  • Magma
    A000894:= func< n | Binomial(2*n+2,2)*Catalan(n)^2 >;
    [A000894(n): n in [0..40]]; // G. C. Greubel, Mar 12 2025
    
  • Maple
    seq(binomial(2*n+1,n)*binomial(2*n,n), n=0..16); # Zerinvary Lajos, Jan 23 2007
  • Mathematica
    a[ n_] := Binomial[2 n + 1, n] Binomial[2 n, n]; (* Michael Somos, May 28 2014 *)
    a[ n_] := SeriesCoefficient[ (EllipticK[ 16 x] - EllipticE[ 16 x]) / (4 x Pi), {x, 0, n}]; (* Michael Somos, May 28 2014 *)
    Table[(2 n)!*(2 n + 1)!/((n + 1)!*n!^3), {n, 0, 16}] (* Michael De Vlieger, Sep 06 2016 *)
  • PARI
    {a(n) =  binomial( 2*n + 1, n) * binomial( 2*n, n)}; /* Michael Somos, May 28 2014 */
    
  • SageMath
    def A000894(n): return binomial(2*n+2,2)*catalan_number(n)^2
    print([A000894(n) for n in range(41)]) # G. C. Greubel, Mar 12 2025

Formula

From Zerinvary Lajos, Jan 23 2007: (Start)
a(n) = C(2*n+1,n)*C(2*n,n) = A001700(n)*A000984(n).
a(n) = A000984(n)*A000984(n+1)/2, n>=0. (End)
G.f.: (EllipticK(4*sqrt(x)) - EllipticE(4*sqrt(x)))/(4*Pi*x). - Mark van Hoeij, Oct 24 2011
n*(n+1)*a(n) = 4*(2*n-1)*(2*n+1)*a(n-1). - R. J. Mathar, Sep 08 2013
a(n) = A103371(2*n,n) = A132813(2*n,n). - Reinhard Zumkeller, Apr 04 2014
0 = a(n)*(+65536*a(n+2) - 23040*a(n+3) + 1400*a(n+4)) + a(n+1)*(-1536*a(n+2) + 1184*a(n+3) - 90*a(n+4)) + a(n+2)*(-24*a(n+2) - 6*a(n+3) + a(n+4)) for all n in Z. - Michael Somos, May 28 2014
0 = a(n+1)^3 * (+256*a(n) - 6*a(n+1) + a(n+2)) + a(n) * a(n+1) * a(n+
2) * (-768*a(n) - 20*a(n+1) - 3*a(n+2)) + 90*a(n)^2*a(n+2)^2 for all n in Z. - Michael Somos, Sep 17 2014
a(n) = (n+1) * A000891(n) = A248045(n+1) / A000142(n). - Reinhard Zumkeller, Sep 30 2014
a(n) = A241530(2n+1)/2, n >= 0. - Wolfdieter Lang, Sep 06 2016
a(n) ~ 2^(4*n+1)/(Pi*n). - Ilya Gutkovskiy, Sep 06 2016
a(n) = A000217(n+1)*A000108(n)*A000108(n+1) = A000217(2*n+1)*A000108(n)^2. - G. C. Greubel, Mar 12 2025

A062264 Coefficient triangle of certain polynomials N(4; m,x).

Original entry on oeis.org

1, 1, 5, 1, 12, 15, 1, 21, 63, 35, 1, 32, 168, 224, 70, 1, 45, 360, 840, 630, 126, 1, 60, 675, 2400, 3150, 1512, 210, 1, 77, 1155, 5775, 11550, 9702, 3234, 330, 1, 96, 1848, 12320, 34650, 44352, 25872, 6336, 495, 1, 117, 2808, 24024, 90090, 162162, 144144, 61776, 11583, 715
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Comments

The e.g.f. of the m-th (unsigned) column sequence without leading zeros of the generalized (a=4) Laguerre triangle L(4; n+m,m) = A062140(n+m,m), n >= 0, is N(4; m,x)/(1-x)^(5+2*m), with the row polynomials N(4; m,x) := Sum_{k=0..m} T(m,k)*x^k.

Examples

			Triangle begins as:
  1;
  1,   5;
  1,  12,   15;
  1,  21,   63,    35;
  1,  32,  168,   224,     70;
  1,  45,  360,   840,    630,    126;
  1,  60,  675,  2400,   3150,   1512,    210;
  1,  77, 1155,  5775,  11550,   9702,   3234,    330;
  1,  96, 1848, 12320,  34650,  44352,  25872,   6336,    495;
  1, 117, 2808, 24024,  90090, 162162, 144144,  61776,  11583,   715;
  1, 140, 4095, 43680, 210210, 504504, 630630, 411840, 135135, 20020, 1001;
		

Crossrefs

Family of polynomials (see A062145): A008459 (c=1), A132813 (c=2), A062196 (c=3), A062145 (c=4), this sequence (c=5), A062190 (c=6).
Columns: A028347 (k=2), A104473 (k=3), A104474 (k=4), A104475 (k=5), A027814 (k=6), A103604 (k=7), A104476 (k=8), A104478 (k=9).
Diagonals: A000332 (k=n), A027810 (k=n-1), A105249 (k=n-2), A105250 (k=n-3), A105251 (k=n-4), A105252 (k=n-5), A105253 (k=n-6), A105254 (k=n-7).
Sums: A002694 (row).

Programs

  • Magma
    A062264:= func< n,k | Binomial(n,k)*Binomial(n+4,k) >;
    [A062264(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 03 2025
    
  • Mathematica
    A062264[n_, k_]:= Binomial[n,k]*Binomial[n+4,k];
    Table[A062264[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 03 2025 *)
  • SageMath
    def A062264(n,k): return binomial(n,k)*binomial(n+4,k)
    print(flatten([[A062264(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Mar 03 2025

Formula

T(m, k) = [x^k] N(4; m, x), with N(4; m, x) = ((1-x)^(2*m+5))*(d^m/dx^m)((x^m)/(m!*(1-x)^(m+5))).
N(4; m, x) = Sum_{j=0..m} (binomial(m, j)*(2*m+4-j)!/((m+4)!*(m-j)!)*(x^(m-j))*(1-x)^j).
From G. C. Greubel, Mar 03 2025: (Start)
T(n, k) = binomial(n,k)*binomial(n+4,k).
Sum_{k=0..n} (-1)^k*T(n, k) = (1/4)*( (1+(-1)^n)*(-1)^((n+2)/2)*(n^2 + 5*n - 2)*Catalan((n+2)/2)/(n+1) + 8*(1-(-1)^n)*(-1)^((n+1)/2)*Catalan((n+1)/2) ). (End)
Showing 1-10 of 12 results. Next