A124051 Quasi-mirror of A062196 formatted as a triangular array.
3, 6, 8, 10, 30, 15, 15, 80, 90, 24, 21, 175, 350, 210, 35, 28, 336, 1050, 1120, 420, 48, 36, 588, 2646, 4410, 2940, 756, 63, 45, 960, 5880, 14112, 14700, 6720, 1260, 80, 55, 1485, 11880, 38808, 58212, 41580, 13860, 1980, 99, 66, 2200, 22275, 95040, 194040, 199584, 103950, 26400, 2970, 120
Offset: 0
Examples
Triangle begins as: 3; 6, 8; 10, 30, 15; 15, 80, 90, 24; 21, 175, 350, 210, 35; 28, 336, 1050, 1120, 420, 48; 36, 588, 2646, 4410, 2940, 756, 63; 45, 960, 5880, 14112, 14700, 6720, 1260, 80; 55, 1485, 11880, 38808, 58212, 41580, 13860, 1980, 99; 66, 2200, 22275, 95040, 194040, 199584, 103950, 26400, 2970, 120;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Columns k: A000217(n+2) (k=0), A002417(n+1) (k=1), A001297(n) (k=2), A105946(n-2) (k=3), A105947(n-3) (k=4), A105948(n-4) (k=5), A107319(n-5) (k=6).
Diagonals: A005563(n+1) (k=n), A033487(n) (k=n-1), A027790(n) (k=n-2), A107395(n-3) (k=n-3), A107396(n-4) (k=n-4), A107397(n-5) (k=n-5), A107398(n-6) (k=n-6), A107399(n-7) (k=n-7).
Sums: A322938(n+1) (row).
Programs
-
Magma
A124051:= func< n,k | Binomial(n+1,n-k+1)*Binomial(n+3,n-k+1) >; [A124051(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 07 2025
-
Maple
for n from 0 to 10 do seq(binomial(n,i-1)*binomial(n+2,n+1-i), i=1..n ) od;
-
Mathematica
A124051[n_, k_]:= Binomial[n+1,n-k+1]*Binomial[n+3,n-k+1]; Table[A124051[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 07 2025 *)
-
SageMath
def A124051(n,k): return binomial(n+1,n-k+1)*binomial(n+3,n-k+1) print(flatten([[A124051(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Feb 07 2025
Formula
From G. C. Greubel, Feb 07 2025: (Start)
T(n, k) = binomial(n+1, n-k+1)*binomial(n+3, n-k+1).
T(2*n, n) = (1/2)*A000894(n) + (5/2)*[n=0].
Comments
= S(S+1) = n(n+2)/4, i.e., one quarter of a(n) with n = 2S. This plays an important role in the theory of magnetism and magnetic resonance. - Stanislav Sykora, May 26 2012