A008459
Square the entries of Pascal's triangle.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 16, 36, 16, 1, 1, 25, 100, 100, 25, 1, 1, 36, 225, 400, 225, 36, 1, 1, 49, 441, 1225, 1225, 441, 49, 1, 1, 64, 784, 3136, 4900, 3136, 784, 64, 1, 1, 81, 1296, 7056, 15876, 15876, 7056, 1296, 81, 1, 1, 100, 2025, 14400, 44100, 63504, 44100, 14400, 2025, 100, 1
Offset: 0
Pascal's triangle begins
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
...
so the present triangle begins
1
1 1
1 4 1
1 9 9 1
1 16 36 16 1
1 25 100 100 25 1
1 36 225 400 225 36 1
1 49 441 1225 1225 441 49 1
...
- T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Chapter 12.
- J. Riordan, An introduction to combinatorial analysis, Dover Publications, Mineola, NY, 2002, page 191, Problem 15. MR1949650
- P. G. Tait, On the Linear Differential Equation of the Second Order, Proceedings of the Royal Society of Edinburgh, 9 (1876), 93-98 (see p. 97) [From Tom Copeland, Sep 09 2010, vol number corrected Sep 10 2010]
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Per Alexandersson, Svante Linusson, Samu Potka, and Joakim Uhlin, Refined Catalan and Narayana cyclic sieving, arXiv:2010.11157 [math.CO], 2020.
- N. Alexeev and A. Tikhomirov, Singular Values Distribution of Squares of Elliptic Random Matrices and type-B Narayana Polynomials, arXiv preprint arXiv:1501.04615 [math.PR], 2015.
- F. Ardila, M. Beck, S. Hosten, J. Pfeifle and K. Seashore, Root polytopes and growth series of root lattices, arXiv:0809.5123 [math.CO], 2008.
- Peter Bala, A commutative diagram of triangular arrays
- E. Barcucci, A. Frosini and S. Rinaldi, On directed-convex polyominoes in a rectangle, Discr. Math., 298 (2005), 62-78.
- Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8.
- Carl M. Bender and Gerald V. Dunne, Polynomials and operator orderings, J. Math. Phys. 29 (1988), 1727-1731.
- Kevin Buchin, Man-Kwun Chiu, Stefan Felsner, Günter Rote, and André Schulz, The Number of Convex Polyominoes with Given Height and Width, arXiv:1903.01095 [math.CO], 2019.
- John H. Conway and N. J. A. Sloane, Low-dimensional lattices. VII Coordination sequences, Proc. R. Soc. Lond. A (1997) 453, 2369-2389.
- R. Cori and G. Hetyei, Counting genus one partitions and permutations, arXiv preprint arXiv:1306.4628 [math.CO], 2013.
- R. Cori and G. Hetyei, How to count genus one partitions, FPSAC 2014, Chicago, Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France, 2014, 333-344.
- Colin Defant, Stack-sorting preimages of permutation classes, arXiv:1809.03123 [math.CO], 2018.
- Sergey Fomin and Nathan Reading, Root systems and generalized associahedra, Lecture notes for IAS/Park-City 2004, arXiv:math/0505518 [math.CO], 2005, 2008. [From _Peter Bala_, Oct 23 2008]
- Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See pp. 10, 13.
- Abdelkader Necer, Séries formelles et produit de Hadamard, Journal de théorie des nombres de Bordeaux, 9:2 (1997), pp. 319-335.
- Weiping Wang and Tianming Wang, Generalized Riordan array, Discrete Mathematics, Vol. 308, No. 24, 6466-6500.
- Yi Wang and Arthur L.B. Yang, Total positivity of Narayana matrices, arXiv:1702.07822 [math.CO], 2017.
- Harold R. L. Yang and Philip B. Zhang, Stable multivariate Narayana polynomials and labeled plane trees, arXiv:2403.15058 [math.CO], 2024. See p. 2.
Cf.
A007318,
A055133,
A116647,
A001263,
A086645,
A063007,
A108558,
A108625 (Hilbert transform),
A145903,
A181543,
A086645 (logarithmic derivative),
A105868 (inverse binomial transform),
A093118.
-
Flat(List([0..10],n->List([0..n],k->Binomial(n,k)^2))); # Muniru A Asiru, Mar 30 2018
-
/* As triangle */ [[Binomial(n, k)^2: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Dec 15 2016
-
seq(seq(binomial(n, k)^2, k=0..n), n=0..10);
-
Table[Binomial[n, k]^2, {n, 0, 11}, {k, 0, n}]//Flatten (* Alonso del Arte, Dec 08 2013 *)
-
create_list(binomial(n,k)^2,n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
-
T(n,k):=if n=k then 1 else if k=0 then 1 else T(n-1,k)*(n+k)/(n-k)+T(n-1,k-1); /* Vladimir Kruchinin, Oct 18 2014 */
-
A(x,y):=1/sqrt(1-2*x-2*x*y+x^2-2*x^2*y+x^2*y^2);
taylor(x*A(x,y)+x*y*A(x,y)+sqrt(1+4*x^2*y*A(x,y)^2),x,0,7,y,0,7); /* Vladimir Kruchinin, Oct 23 2020 */
-
{T(n, k) = if( k<0 || k>n, 0, binomial(n, k)^2)}; /* Michael Somos, May 03 2004 */
-
{T(n,k)=polcoeff(polcoeff(sum(m=0,n,(2*m)!/m!^2*x^(2*m)*y^m/(1-x-x*y+x*O(x^n))^(2*m+1)),n,x),k,y)} \\ Paul D. Hanna, Oct 31 2010
-
def A008459(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),n-comb(r+1,2))**2 # Chai Wah Wu, Nov 12 2024
A028552
a(n) = n*(n+3).
Original entry on oeis.org
0, 4, 10, 18, 28, 40, 54, 70, 88, 108, 130, 154, 180, 208, 238, 270, 304, 340, 378, 418, 460, 504, 550, 598, 648, 700, 754, 810, 868, 928, 990, 1054, 1120, 1188, 1258, 1330, 1404, 1480, 1558, 1638, 1720, 1804, 1890, 1978, 2068, 2160, 2254, 2350, 2448, 2548, 2650
Offset: 0
G.f. = 4*x + 10*x^2 + 18*x^3 + 28*x^4 + 40*x^5 + 54*x^6 + 70*x^7 + 88*x^8 + ...
- Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
- Patrick De Geest, Palindromic Quasipronics of the form n(n+x).
- Milan Janjic, Two Enumerative Functions.
- Mathematics Stack Exchange, Expected number of turns for a rook to move to top right-most corner?.
- Felix P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, Preprint on ResearchGate, March 2014.
- Aleksandar Petojević, A Note about the Pochhammer Symbol, Mathematica Moravica, Vol. 12-1 (2008), 37-42.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
[n*(n+3): n in [0..150]]; // Vincenzo Librandi, Apr 21 2011
-
A028552 := proc(n) n*(n+3); end proc: # R. J. Mathar, Jan 29 2011
-
LinearRecurrence[{3,-3,1},{0,4,10},50] (* Harvey P. Dale, Feb 05 2012 *)
Table[ChineseRemainder[{n, n + 1}, {n + 2, n + 3}], {n, -1, 80}] (* Zak Seidov, Oct 25 2014 *)
Table[ChineseRemainder@@TakeDrop[Range[n,n+3],2],{n,-1,50}] (* Harvey P. Dale, Mar 14 2025 *)
-
makelist(n*(n+3),n,0,20); /* Martin Ettl, Jan 22 2013 */
-
a(n)=n*(n+3) \\ Charles R Greathouse IV, Mar 16 2012
A062190
Coefficient triangle of certain polynomials N(5; m,x).
Original entry on oeis.org
1, 1, 6, 1, 14, 21, 1, 24, 84, 56, 1, 36, 216, 336, 126, 1, 50, 450, 1200, 1050, 252, 1, 66, 825, 3300, 4950, 2772, 462, 1, 84, 1386, 7700, 17325, 16632, 6468, 792, 1, 104, 2184, 16016, 50050, 72072, 48048, 13728, 1287, 1, 126, 3276, 30576, 126126, 252252, 252252, 123552, 27027, 2002
Offset: 0
Triangle begins as:
1;
1, 6;
1, 14, 21;
1, 24, 84, 56;
1, 36, 216, 336, 126;
1, 50, 450, 1200, 1050, 252;
1, 66, 825, 3300, 4950, 2772, 462;
1, 84, 1386, 7700, 17325, 16632, 6468, 792;
1, 104, 2184, 16016, 50050, 72072, 48048, 13728, 1287;
1, 126, 3276, 30576, 126126, 252252, 252252, 123552, 27027, 2002;
1, 150, 4725, 54600, 286650, 756756, 1051050, 772200, 289575, 50050, 3003;
-
A062190:= func< n,k | Binomial(n,k)*Binomial(n+5,k) >;
[A062190(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 28 2025
-
A062190 := proc(m,k)
add( (binomial(m, j)*(2*m+5-j)!/((m+5)!*(m-j)!))*(x^(m-j))*(1-x)^j,j=0..m) ;
coeftayl(%,x=0,k) ;
end proc: # R. J. Mathar, Nov 29 2015
-
NN[5, m_, x_] := x^m*(2*m+5)!*Hypergeometric2F1[-m, -m, -2*m-5, (x-1)/x]/((m+5)!*m!); Table[CoefficientList[NN[5, m, x], x], {m, 0, 8}] // Flatten (* Jean-François Alcover, Sep 18 2013 *)
A062190[n_,k_]:= Binomial[n,k]*Binomial[n+5,k];
Table[A062190[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 28 2025 *)
-
def A062190(n,k): return binomial(n,k)*binomial(n+5,k)
print(flatten([[A062190(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Feb 28 2025
A062196
Triangle read by rows, T(n, k) = binomial(n, k)*binomial(n + 2, k).
Original entry on oeis.org
1, 1, 3, 1, 8, 6, 1, 15, 30, 10, 1, 24, 90, 80, 15, 1, 35, 210, 350, 175, 21, 1, 48, 420, 1120, 1050, 336, 28, 1, 63, 756, 2940, 4410, 2646, 588, 36, 1, 80, 1260, 6720, 14700, 14112, 5880, 960, 45, 1, 99, 1980, 13860, 41580, 58212, 38808, 11880, 1485, 55
Offset: 0
Triangle starts:
n\k 0...1.....2......3..... 4.....;
[0] 1;
[1] 1, 3;
[2] 1, 8, 6;
[3] 1, 15, 30, 10;
[4] 1, 24, 90, 80, 15;
[5] 1, 35, 210, 350, 175, 21;
[6] 1, 48, 420, 1120, 1050, 336, 28;
[7] 1, 63, 756, 2940, 4410, 2646, 588, 36;
[8] 1, 80, 1260, 6720, 14700, 14112, 5880, 960, 45;
[9] 1, 99, 1980, 13860, 41580, 58212, 38808, 11880, 1485, 55.
Sums include:
A001791 (row), (-1)^n*
A089849(n+1) (alternating sign row).
-
A062196:= func;
[A062196(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 21 2025
-
T := (n, k) -> binomial(n, k)*binomial(n + 2, k);
seq(seq(T(n, k), k=0..n), n=0..9); # Peter Luschny, Sep 30 2021
-
A062196[n_, k_]:= Binomial[n, k]*Binomial[n+2, k];
Table[A062196[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 21 2025 *)
-
def A062196(n,k): return binomial(n,k)*binomial(n+2,k)
print(flatten([[A062196(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Feb 21 2025
A062264
Coefficient triangle of certain polynomials N(4; m,x).
Original entry on oeis.org
1, 1, 5, 1, 12, 15, 1, 21, 63, 35, 1, 32, 168, 224, 70, 1, 45, 360, 840, 630, 126, 1, 60, 675, 2400, 3150, 1512, 210, 1, 77, 1155, 5775, 11550, 9702, 3234, 330, 1, 96, 1848, 12320, 34650, 44352, 25872, 6336, 495, 1, 117, 2808, 24024, 90090, 162162, 144144, 61776, 11583, 715
Offset: 0
Triangle begins as:
1;
1, 5;
1, 12, 15;
1, 21, 63, 35;
1, 32, 168, 224, 70;
1, 45, 360, 840, 630, 126;
1, 60, 675, 2400, 3150, 1512, 210;
1, 77, 1155, 5775, 11550, 9702, 3234, 330;
1, 96, 1848, 12320, 34650, 44352, 25872, 6336, 495;
1, 117, 2808, 24024, 90090, 162162, 144144, 61776, 11583, 715;
1, 140, 4095, 43680, 210210, 504504, 630630, 411840, 135135, 20020, 1001;
-
A062264:= func< n,k | Binomial(n,k)*Binomial(n+4,k) >;
[A062264(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 03 2025
-
A062264[n_, k_]:= Binomial[n,k]*Binomial[n+4,k];
Table[A062264[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 03 2025 *)
-
def A062264(n,k): return binomial(n,k)*binomial(n+4,k)
print(flatten([[A062264(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Mar 03 2025
A132813
Triangle read by rows: A001263 * A127648 as infinite lower triangular matrices.
Original entry on oeis.org
1, 1, 2, 1, 6, 3, 1, 12, 18, 4, 1, 20, 60, 40, 5, 1, 30, 150, 200, 75, 6, 1, 42, 315, 700, 525, 126, 7, 1, 56, 588, 1960, 2450, 1176, 196, 8, 1, 72, 1008, 4704, 8820, 7056, 2352, 288, 9, 1, 90, 1620, 10080, 26460, 31752, 17640, 4320, 405, 10
Offset: 0
First few rows of the triangle are:
1;
1, 2;
1, 6, 3;
1, 12, 18, 4;
1, 20, 60, 40, 5;
1, 30, 150, 200, 75, 6;
1, 42, 315, 700, 525, 126, 7;
...
- Reinhard Zumkeller, Rows n = 0..125 of table, flattened
- N. Alexeev and A. Tikhomirov, Singular Values Distribution of Squares of Elliptic Random Matrices and type-B Narayana Polynomials, arXiv preprint arXiv:1501.04615 [math.PR], 2015.
- C. Athanasiadis and C. Savvidou, The local h-vector of the cluster subdivision of a simplex, arXiv preprint arXiv:1204.0362 [math.CO], 2012.
- Robert. A. Sulanke, Counting Lattice Paths by Narayana Polynomials Electronic J. Combinatorics 7, No. 1, R40, 1-9, 2000.
-
Flat(List([0..10],n->List([0..n], k->(k+1)*Binomial(n+1,k+1)*Binomial(n+1,k)/(n+1)))); # Muniru A Asiru, Feb 26 2019
-
a132813 n k = a132813_tabl !! n !! k
a132813_row n = a132813_tabl !! n
a132813_tabl = zipWith (zipWith (*)) a007318_tabl $ tail a007318_tabl
-- Reinhard Zumkeller, Apr 04 2014
-
/* triangle */ [[(k+1)*Binomial(n+1,k+1)*Binomial(n+1,k)/(n+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 19 2014
-
P := (n, x) -> hypergeom([1-n, -n], [1], x): for n from 1 to 9 do PolynomialTools:-CoefficientList(simplify(P(n,x)),x) od; # Peter Luschny, Nov 26 2014
-
T[n_,k_]=Binomial[n-1,k-1]*Binomial[n,k-1]; Table[Table[T[n,k],{k,1,n}],{n,1,11}]; Flatten[%] (* Roger L. Bagula, Apr 09 2008 *)
P[n_, x_] := HypergeometricPFQ[{1-n, -n}, {1}, x]; Table[CoefficientList[P[n, x], x], {n, 1, 10}] // Flatten (* Jean-François Alcover, Nov 27 2014, after Peter Luschny *)
-
tabl(nn) = {for (n = 1, nn, for (k = 1, n, print1(binomial(n-1, k-1)*binomial(n, k-1) , ", ");););} \\ Michel Marcus, Feb 12 2014
-
def A132813(n,k): return binomial(n,k)*binomial(n+1,k)
print(flatten([[A132813(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Mar 12 2025
A027803
a(n) = 35*(n+1)*binomial(n+4, 7)/4.
Original entry on oeis.org
35, 350, 1890, 7350, 23100, 62370, 150150, 330330, 675675, 1301300, 2382380, 4176900, 7054320, 11531100, 18314100, 28352940, 42902475, 63596610, 92534750, 132382250, 186486300, 259008750, 355077450, 480957750, 644245875
Offset: 3
- G. C. Greubel, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
-
A027803:= func< n | 5*(n+1)*(n+4)*Binomial(n+3,6)/4 >;
[A027803(n): n in [3..45]]; // G. C. Greubel, Mar 11 2025
-
Table[35 (n+1) Binomial[n+4,7]/4, {n,3,30}] (* or *) Table[Binomial[n+1, 4] Binomial[n+4,4], {n,3,30}] (* Michael De Vlieger, Mar 16 2016 *)
LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1}, {35,350,1890,7350,23100, 62370,150150,330330,675675}, 30] (* Harvey P. Dale, May 07 2022 *)
-
def A027803(n): return binomial(n+1,4)*binomial(n+4,4)
print([A027803(n) for n in range(3,46)]) # G. C. Greubel, Mar 11 2025
A062144
Sixth (unsigned) column sequence of coefficient triangle A062137 of generalized Laguerre polynomials n!*L(n,3,x).
Original entry on oeis.org
1, 54, 1890, 55440, 1496880, 38918880, 998917920, 25686460800, 667847980800, 17660868825600, 476843458291200, 13178219210956800, 373382877643776000, 10856825211488256000, 324153781314435072000
Offset: 0
a(2) = (2+5)! * binomial(2+8,8)/ 5! = (5040 * 45) / 120 = 1890. - _Indranil Ghosh_, Feb 24 2017
-
[Factorial(n+5)*Binomial(n+8, 8)/Factorial(5): n in [0..20]]; // G. C. Greubel, May 11 2018
-
Table[(n+5)!*Binomial[n+8,8]/5!,{n,0,14}] (* Indranil Ghosh, Feb 24 2017 *)
-
a(n)=(n+5)!*binomial(n+8, 8)/5! \\ Indranil Ghosh, Feb 24 2017
-
import math
f=math.factorial
def C(n, r):return f(n)/f(r)/f(n-r)
def A062144(n): return f(n+5)*C(n+8, 8)/f(5) # Indranil Ghosh, Feb 24 2017
A105939
a(n) = binomial(n+3,3)*binomial(n+6,3).
Original entry on oeis.org
20, 140, 560, 1680, 4200, 9240, 18480, 34320, 60060, 100100, 160160, 247520, 371280, 542640, 775200, 1085280, 1492260, 2018940, 2691920, 3542000, 4604600, 5920200, 7534800, 9500400, 11875500, 14725620, 18123840, 22151360, 26898080, 32463200, 38955840, 46495680
Offset: 0
If n=0 then C(0+3,0)*C(0+6,3) = C(3,0)*C(6,3) = 1*20 = 20.
If n=8 then C(8+3,8)*C(8+6,3) = C(11,8)*C(14,3) = 165*364 = 60060.
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Ömür Deveci and Anthony G. Shannon, Some aspects of Neyman triangles and Delannoy arrays, Mathematica Montisnigri (2021) Vol. L, 36-43.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
-
A105939:= func< n | 20*Binomial(n+6,6) >;
[A105939(n): n in [0..40]]; // G. C. Greubel, Mar 11 2025
-
nn=25; f[x_]:=Exp[x](x^3/3!)^2;Range[0,nn]! CoefficientList[Series[ a=f''''''[x],{x,0,nn}],x] (* Geoffrey Critzer, Sep 03 2013 *)
Table[Binomial[n+3,3]Binomial[n+6,3],{n,0,30}] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1},{20,140,560,1680,4200,9240,18480},30] (* Harvey P. Dale, Mar 09 2022 *)
20*Binomial[Range[0,40] +6,6] (* G. C. Greubel, Mar 11 2025 *)
-
def A105939(n): return 20*binomial(n+6,6)
print([A105939(n) for n in range(41)]) # G. C. Greubel, Mar 11 2025
A107418
a(n) = binomial(n+3,3)*binomial(n+6,6).
Original entry on oeis.org
1, 28, 280, 1680, 7350, 25872, 77616, 205920, 495495, 1101100, 2290288, 4504864, 8446620, 15193920, 26356800, 44279424, 72299997, 115079580, 179012680, 272734000, 407737330, 599124240, 866502000, 1235052000, 1736791875, 2412056556, 3311225568, 4496726080, 6045343480
Offset: 0
If n=0 then C(0+3,3)*C(0+6,6) = C(3,3)*C(6,6) = 1*1 = 1.
If n=8 then C(8+3,3)*C(8+6,6) = C(11,3)*C(14,6) = 165*3003 = 495495.
- Robert Israel, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
-
A107418:= func< n | Binomial(n+3,n)*Binomial(n+6,n) >;
[A107418(n): n in [0..40]]; // G. C. Greubel, Mar 10 2025
-
seq(binomial(n+3,3)*binomial(n+6,6),n=0..100); # Robert Israel, Feb 24 2017
-
a[n_] := Binomial[n + 3, 3] * Binomial[n + 6, 6]; Array[a, 30, 0] (* Amiram Eldar, Sep 06 2022 *)
-
for(n=0,29,print1(binomial(n+3,3)*binomial(n+6,6),","))
-
def A107418(n): return binomial(n+3,n)*binomial(n+6,n)
print([A107418(n) for n in range(41)]) # G. C. Greubel, Mar 10 2025
Showing 1-10 of 21 results.
Comments