cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A053347 a(n) = binomial(n+7, 7)*(n+4)/4.

Original entry on oeis.org

1, 10, 54, 210, 660, 1782, 4290, 9438, 19305, 37180, 68068, 119340, 201552, 329460, 523260, 810084, 1225785, 1817046, 2643850, 3782350, 5328180, 7400250, 10145070, 13741650, 18407025, 24402456, 32040360, 41692024, 53796160
Offset: 0

Views

Author

Barry E. Williams, Jan 06 2000

Keywords

Comments

If a 2-set Y and an (n-3)-set Z are disjoint subsets of an n-set X then a(n-9) is the number of 9-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 08 2007
8-dimensional square numbers, seventh partial sums of binomial transform of [1, 2, 0, 0, 0, ...]. a(n) = sum{i=0,n,C(n+7, i+7)*b(i)}, where b(i) = [1, 2, 0, 0, 0, ...]. - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
2*a(n) is number of ways to place 7 queens on an (n+7) X (n+7) chessboard so that they diagonally attack each other exactly 21 times. The maximal possible attack number, p=binomial(k,2)=21 for k=7 queens, is achievable only when all queens are on the same diagonal. In graph-theory representation they thus form the corresponding complete graph. - Antal Pinter, Dec 27 2015
Coefficients in the terminating series identity 1 - 10*n/(n + 9) + 54*n*(n - 1)/((n + 9)*(n + 10)) - 210*n*(n - 1)*(n - 2)/((n + 9)*(n + 10)*(n + 11)) + ... = 0 for n = 1,2,3,.... Cf. A050486. - Peter Bala, Feb 18 2019

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Partial sums of A050486.

Programs

  • Magma
    [Binomial(n+7,7)+2*Binomial(n+7,8): n in [0..35]]; // Vincenzo Librandi, Jun 09 2013
    
  • Maple
    A053347:=n->binomial(n+7,7)*(n+4)/4: seq(A053347(n), n=0..50); # Wesley Ivan Hurt, Jul 16 2017
  • Mathematica
    s1=s2=s3=s4=s5=s6=0; lst={}; Do[s1+=n^2; s2+=s1; s3+=s2; s4+=s3; s5+=s4; s6+=s5; AppendTo[lst,s6],{n,0,7!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 15 2009 *)
    CoefficientList[Series[(1 + x) / (1 - x)^9, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)
    Table[SeriesCoefficient[(1 + x)/(1 - x)^9, {x, 0, n}], {n, 0, 28}] (* or *)
    Table[Binomial[n + 7, 7] (n + 4)/4, {n, 0, 28}] (* Michael De Vlieger, Dec 31 2015 *)
  • PARI
    a(n)=binomial(n+7,7)*(n+4)/4 \\ Charles R Greathouse IV, Jun 10 2011
    
  • Python
    A053347_list, m = [], [2]+[1]*8
    for _ in range(10**2):
        A053347_list.append(m[-1])
        print(m[-1])
        for i in range(8):
            m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016

Formula

a(n) = ((-1)^n)*A053120(2*n+8, 8)/2^7 (1/128 of ninth unsigned column of Chebyshev T-triangle, zeros omitted).
G.f.: (1+x)/(1-x)^9.
a(n) = 2*C(n+8, 8) - C(n+7, 7). - Paul Barry, Mar 04 2003
a(n) = A027803(n-3)/35 = C(n+4, n)*C(n+7, 4)/35. - Zerinvary Lajos, May 25 2005
a(n) = C(n+7, 7) + 2*C(n+7, 8). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
a(n) = (n^8 + 32*n^7 + 434*n^6 + 3248*n^5 + 14609*n^4 + 40208*n^3 + 65596*n^2 + 57312*n + 20160)/20160. - Chai Wah Wu, Jan 24 2016
Sum_{n>=0} 1/a(n) = 41503/45 - 280/3*Pi^2. - Jaume Oliver Lafont, Jul 17 2017
Sum_{n>=0} (-1)^n/a(n) = 140*Pi^2/3 - 1379/3. - Amiram Eldar, Jan 25 2022

A062145 Triangle read by rows: T(n, k) = [z^k] P(n, z) where P(n, z) = Sum_{k=0..n} binomial(n, k) * Pochhammer(n - k + c, k) * z^k / k! and c = 4.

Original entry on oeis.org

1, 1, 4, 1, 10, 10, 1, 18, 45, 20, 1, 28, 126, 140, 35, 1, 40, 280, 560, 350, 56, 1, 54, 540, 1680, 1890, 756, 84, 1, 70, 945, 4200, 7350, 5292, 1470, 120, 1, 88, 1540, 9240, 23100, 25872, 12936, 2640, 165, 1, 108, 2376, 18480, 62370, 99792, 77616, 28512, 4455, 220
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Comments

Coefficient triangle of certain polynomials N(3; m,x).

Examples

			As a square array:
    1,    1,     1,     1,     1,     1,    1,  1, ... A000012;
    4,   10,    18,    28,    40,    54,   70, 88, ... A028552;
   10,   45,   126,   280,   540,   945, 1540, ....... A105938;
   20,  140,   560,  1680,  4200,  9240, ............. A105939;
   35,  350,  1890,  7350, 23100, 62370, ............. A027803;
   56,  756,  5292, 25872, 99792, .................... A105940;
   84, 1470, 12936, 77616, ........................... A105942;
  120, 2640, 28512, .................................. A105943;
  165, 4455, 57015, .................................. A105944;
  ....;
As a triangle:
  1;
  1,   4;
  1,  10,   10;
  1,  18,   45,    20;
  1,  28,  126,   140,    35;
  1,  40,  280,   560,   350,    56;
  1,  54,  540,  1680,  1890,   756,    84;
  1,  70,  945,  4200,  7350,  5292,  1470,   120;
  1,  88, 1540,  9240, 23100, 25872, 12936,  2640,  165;
  1, 108, 2376, 18480, 62370, 99792, 77616, 28512, 4455, 220;
  ....;
		

Crossrefs

Family of polynomials: A008459 (c=1), A132813 (c=2), A062196 (c=3), this sequence (c=4), A062264 (c=5), A062190 (c=6).
Columns: A028552 (k=1), A105938 (k=2), A105939 (k=3), A027803 (k=4), A105940 (k=5), A105942 (k=6), A105943 (k=7), A105944 (k=8).
Diagonals: A000292 (k=n), A027800 (k=n-1), A107417 (k=n-2), A107418 (k=n-3), A107419 (k=n-4), A107420 (k=n-5), A107421 (k=n-6), A107422 (k=n-7).
Sums: A002054 (row).

Programs

  • Magma
    A062145:= func< n,k | Binomial(n,k)*Binomial(n+3,k) >;
    [A062145(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 07 2025
    
  • Mathematica
    NN[3, m_, x_] := x^m*(2*m+3)!*Hypergeometric2F1[-m, -m, -2*m-3, (x-1)/x]/( (m+3)!*m!); Table[CoefficientList[NN[3, m, x], x], {m, 0, 9}] // Flatten (* Jean-François Alcover, Sep 18 2013 *)
    P[c_, n_, z_] := Sum[Binomial[n, k] Pochhammer[n-k+c, k] z^k /k!, {k,0,n}];
    CL[c_] := Table[CoefficientList[P[c, n, z], z], {n, 0, 5}] // TableForm
    CL[4]  (* Peter Luschny, Feb 12 2024 *)
    A062145[n_,k_]:= Binomial[n,k]*Binomial[n+3,k];
    Table[A062145[n,k], {n,0,12},{k,0,n}]//Flatten (* G. C. Greubel, Mar 07 2025 *)
  • SageMath
    def A062145(n,k): return binomial(n,k)*binomial(n+3,k)
    print(flatten([[A062145(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Mar 07 2025

Formula

The e.g.f. of the m-th (unsigned) column sequence without leading zeros of the generalized (a=3) Laguerre triangle L(3; n+m, m) = A062137(n+m, m), n >= 0, is N(3; m, x)/(1-x)^(2*(m+2)), with the row polynomials N(3; m, x) := Sum_{k=0..m} a(m, k)*x^k.
N(3; m, x) := ((1-x)^(2*(m+2)))*(d^m/dx^m)(x^m/(m!*(1-x)^(m+4))); a(m, k) = [x^k]N(3; m, x).
N(3; m, x) = Sum_{j=0..m} ((binomial(m, j)*(2*m+3-j)!/((m+3)!*(m-j)!))*(x^(m-j))*(1-x)^j).
N(3; m, x)= x^m*(2*m+3)! * 2F1(-m, -m; -2*m-3; (x-1)/x)/((m+3)!*m!). - Jean-François Alcover, Sep 18 2013
From G. C. Greubel, Mar 07 2025 : (Start)
T(n, k) = binomial(n, k)*binomial(n+3, k).
T(2*n, n) = (1/2)*(n+1)^2*A000108(n)*A000108(n+2).
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^floor((n+2)/2)*(A047074(n+3) - A047074(n+ 2)). (End)

Extensions

New name by Peter Luschny, Feb 12 2024
More terms from G. C. Greubel, Mar 07 2025
Showing 1-2 of 2 results.