cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A051921 Duplicate of A023998.

Original entry on oeis.org

1, 1, 3, 16, 131, 1496, 22482, 426833, 9934563, 277006192, 9085194458
Offset: 0

Views

Author

Keywords

A275043 Number A(n,k) of set partitions of [k*n] such that within each block the numbers of elements from all residue classes modulo k are equal for k>0, A(n,0)=1; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 5, 16, 15, 1, 1, 1, 9, 64, 131, 52, 1, 1, 1, 17, 298, 1613, 1496, 203, 1, 1, 1, 33, 1540, 25097, 69026, 22482, 877, 1, 1, 1, 65, 8506, 461105, 4383626, 4566992, 426833, 4140, 1, 1, 1, 129, 48844, 9483041, 350813126, 1394519922, 437665649, 9934563, 21147, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 14 2016

Keywords

Examples

			A(2,2) = 3: 1234, 12|34, 14|23.
A(2,3) = 5: 123456, 123|456, 126|345, 135|246, 156|234.
A(2,4) = 9: 12345678, 1234|5678, 1238|4567, 1247|3568, 1278|3456, 1346|2578, 1368|2457, 1467|2358, 1678|2345.
A(3,2) = 16: 123456, 1234|56, 1236|45, 1245|36, 1256|34, 12|3456, 12|34|56, 12|36|45, 1346|25, 1456|23, 14|2356, 14|23|56, 16|2345, 16|23|45, 14|25|36, 16|25|34.
Square array A(n,k) begins:
  1,   1,     1,       1,          1,            1,               1, ...
  1,   1,     1,       1,          1,            1,               1, ...
  1,   2,     3,       5,          9,           17,              33, ...
  1,   5,    16,      64,        298,         1540,            8506, ...
  1,  15,   131,    1613,      25097,       461105,         9483041, ...
  1,  52,  1496,   69026,    4383626,    350813126,     33056715626, ...
  1, 203, 22482, 4566992, 1394519922, 573843627152, 293327384637282, ...
		

Crossrefs

Rows n=0+1,2-5 give: A000012, A094373, A275100, A275101, A275102.
Main diagonal gives A275044.
Cf. A345400.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(k*n=0, 1, add(
           binomial(n, j)^k*(n-j)*A(j, k), j=0..n-1)/n)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[n_, k_] := A[n, k] = If[k*n == 0, 1, Sum[Binomial[n, j]^k*(n-j)*A[j, k], {j, 0, n-1}]/n]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 17 2017, translated from Maple *)

A023997 Number of block permutations on an n-set.

Original entry on oeis.org

1, 1, 3, 25, 339, 6721, 179643, 6166105, 262308819, 13471274401, 818288740923, 57836113793305, 4693153430067699, 432360767273547841, 44794795522199781243, 5176959027946049635225, 662704551840482536170579
Offset: 0

Views

Author

Des FitzGerald (D.FitzGerald(AT)utas.edu.au)

Keywords

Comments

A block permutation of a set X is a bijection between two quotient sets of X (of necessarily equal rank).
Number of labeled partitions of (n,n) into pairs (i,j) where there are n black objects labeled 1..n and n white objects labeled 1..n. Each partition must have at least one black object and at least one white object. - Christian G. Bower, Jun 03 2005

Examples

			For n=3, there are the 3! ordinary permutations (of rank 3), 18 block permutations of rank 2 (2! for each pair of partitions of rank 2) and the single rank 1 one.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[StirlingS2[n,k]^2k!,{k,0,n}],{n,0,100}] (* Emanuele Munarini, Jul 04 2011 *)
  • Maxima
    makelist(sum(stirling2(n,k)^2*k!,k,0,n),n,0,24); /* Emanuele Munarini, Jul 04 2011 */
    
  • PARI
    a(n) = if (n==0, 1, sum(k=1, n, k!*stirling(n, k, 2)^2)); \\ Michel Marcus, Jun 18 2019

Formula

a(0)=1, a(n) = Sum_{k=1..n} k! * S2(n,k)^2, S2(n,k) are the Stirling numbers of the second kind.

Extensions

More terms from Christian G. Bower, Jun 03 2005

A061691 Triangle of generalized Stirling numbers.

Original entry on oeis.org

1, 1, 2, 1, 9, 6, 1, 34, 72, 24, 1, 125, 650, 600, 120, 1, 461, 5400, 10500, 5400, 720, 1, 1715, 43757, 161700, 161700, 52920, 5040, 1, 6434, 353192, 2361016, 4116000, 2493120, 564480, 40320, 1, 24309, 2862330, 33731208, 96960024, 97161120, 39372480, 6531840, 362880
Offset: 1

Views

Author

N. J. A. Sloane, Jun 18 2001

Keywords

Comments

The Eulerian-type number triangle associated with this triangle of generalized Stirling numbers is A192721. The table entry T(n,k) gives the number of uniform block permutations of the set {1,2,...,n} partitioned into k blocks. An example is given below. T(n,k) also gives the number of games of simple patience with n cards resulting in k piles (adapt Algorithm 1.1.22 of Lankham). [Peter Bala, Jul 14 2011]

Examples

			Triangle begins:
  1;
  1,2;
  1,9,6;
  1,34,72,24;
  1,125,650,600,120;
  ...
T(4,2) = 34:
There are 7 partitions of the set {1,2,3,4} into 2 blocks. The four partitions {1,2,3}{4}, {1,2,4}{3}, {1,3,4}{2} and {2,3,4}{1} give rise to 4*4 = 16 uniform block permutations while the remaining 3 partitions {1,2}{3,4}, {1,3}{2,4} and {1,4}{2,3} give 2!*3*3 = 18 uniform block permutations : thus in total there are 16+18 = 34 block permutations between the set partitions of {1,2,3,4} into 2 blocks.
		

Crossrefs

Diagonals give A010763, A061690, A000142, A001809, A061689. Cf. A061692. A023998 (row sums), A192721, A192722.

Programs

  • Maple
    #A061691
    #J = sum {n>=0} z^n/n!^2
    J := BesselJ(0, 2*i*sqrt(z)):
    G := exp(x*(J(z)-1)):
    Gser := simplify(series(G, z = 0, 12)):
    for n from 1 to 10 do
    P[n] := n!^2*sort(coeff(Gser, z, n)) od:
    for n from 1 to 10 do seq(coeff(P[n],x,k), k = 1..n) od;
    # yields sequence in triangular form
    # second Maple program:
    b:= proc(n) option remember; expand(`if`(n=0, 1,
          add(x*b(n-i)*binomial(n, i)/i!, i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i)/i!, i=1..n))(b(n)*n!):
    seq(T(n), n=1..12);  # Alois P. Heinz, Sep 10 2019
  • Mathematica
    max = 9; g := Exp[x*(BesselI[0, 2*Sqrt[z]] - 1)]; gser = Series[g, {z, 0, max}, {x, 0, max}]; t[n_, k_] := n!^2*SeriesCoefficient[ gser // Normal, {z, 0, n}, {x, 0, k}]; Flatten[ Table[ t[n, k], {n, 1, max}, {k, 1, n}]] (* Jean-François Alcover, Apr 04 2012, after Maple *)

Formula

T(n, k) = 1/k!*Sum multinomial(n, n_1, n_2, ..n_k)^2, where the sum extends over all compositions (n_1, n_2, .., n_k) of n into exactly k nonnegative parts. - Vladeta Jovovic, Apr 23 2003
From Peter Bala, Jul 14 2011: (Start)
The table entry T(n,k) may also be expressed as a sum over (unordered) partitions of n into k parts:
T(n,k) = sum {partitions m_1*1+...+m_n*n = n, m_1+...+m_n = k} 1/(m_1!*...*m_n!)*{n!/(1!^(m_1)*...*n!^(m_n))}^2.
Generating function:
Let J(z) = sum {n>=0} z^n/n!^2. Then
exp(x*(J(z)-1)) = 1 + x*z + (x + 2*x^2)*z^2/2!^2 + (x + 9*x^2 + 6*x^3)*z^3/3!^2 + ....
Relations with other sequences:
T(n,k) = 1/k!*A192722(n,k).
Row sums [1,3,16,131,...] = A023998. (End)
The row polynomials R(n,x) satisfy the recurrence equation R(n,x) = x*( sum {k = 0..n-1} binomial(n,k)*binomial(n-1,k)*R(k,x) ) with R(0,x) = 1. Also R(n,x + y) = sum {k = 0..n} binomial(n,k)^2*R(k,x)*R(n-k,y). - Peter Bala, Sep 17 2013

Extensions

More terms from Vladeta Jovovic, Apr 23 2003

A322670 Number T(n,k) of colored set partitions of [n] where colors of the elements of subsets are distinct and in increasing order and exactly k colors are used; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 12, 16, 0, 1, 41, 156, 131, 0, 1, 140, 1155, 2460, 1496, 0, 1, 497, 8020, 32600, 47355, 22482, 0, 1, 1848, 55629, 385420, 1004360, 1098678, 426833, 0, 1, 7191, 394884, 4396189, 18304510, 34625304, 30259712, 9934563
Offset: 0

Views

Author

Alois P. Heinz, Aug 29 2019

Keywords

Examples

			T(3,2) = 12: 1a|2a3b, 1b|2a3b, 1a3b|2a, 1a3b|2b, 1a2b|3a, 1a2b|3b, 1a|2a|3b, 1a|2b|3a, 1b|2a|3a, 1a|2b|3b, 1b|2a|3b, 1b|2b|3a.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1,    3;
  0, 1,   12,    16;
  0, 1,   41,   156,    131;
  0, 1,  140,  1155,   2460,    1496;
  0, 1,  497,  8020,  32600,   47355,   22482;
  0, 1, 1848, 55629, 385420, 1004360, 1098678, 426833;
  ...
		

Crossrefs

Columns k=0-2 give: A000007, A057427, A325482.
Main diagonal gives A023998.
Row sums give A325478.
T(2n,n) gives A325481.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(A(n-j, k)*
          binomial(n-1, j-1)*binomial(k, j), j=1..min(k, n)))
        end:
    T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[A[n-j, k] Binomial[n-1, j-1]* Binomial[k, j], {j, 1, Min[k, n]}]];
    T[n_, k_] := Sum[A[n, k-i] (-1)^i Binomial[k, i], {i, 0, k}];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 30 2020, after Alois P. Heinz *)

Formula

Sum_{k=1..n} k * T(n,k) = A325930(n).

A193161 E.g.f. A(x) satisfies: A(x/(1-x))/(1-x) = d/dx x*A(x).

Original entry on oeis.org

1, 1, 3, 17, 152, 1944, 33404, 738212, 20316288, 679237248, 27050017152, 1262790237312, 68193683598336, 4212508572109824, 294822473048043264, 23184842446161993984, 2033884583922970558464, 197767395237549512097792, 21194678534706844531458048
Offset: 0

Views

Author

Paul D. Hanna, Jul 16 2011

Keywords

Comments

In Cellarosi and Sinai (2011) on page 257, m_k denotes a(k)/k!. - Michael Somos, Dec 28 2012

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 17*x^3/3! + 152*x^4/4! + 1944*x^5/5! + ...
Related expansions:
A(x/(1-x))/(1-x) = 1 + 2*x + 9*x^2/2! + 68*x^3/3! + 760*x^4/4! + ...
A(x) + x*A'(x) = 1 + 2*x + 9*x^2/2! + 68*x^3/3! + 760*x^4/4! + ...
Also, a(n) appears in the expansion:
B(x) = 1 + x + 3*x^2/2!^2 + 17*x^3/3!^2 + 152*x^4/4!^2 + 1944*x^5/5!^2 + ...
where
log(B(x)) = x + x^2/(2*2!) + x^3/(3*3!) + x^4/(4*4!) + x^5/(5*5!) + ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-i)*binomial(n-1, i-1)/i, i=1..n))
        end:
    a:= n-> b(n)*n!:
    seq(a(n), n=0..25);  # Alois P. Heinz, May 11 2016
  • Mathematica
    a[ n_] := If[ n<0, 0, n!^2 Assuming[ x>0, SeriesCoefficient[ Exp[ Integrate[ (Exp[t] - 1)/t, {t, 0, x}]], {x, 0, n}]]]; (* Michael Somos, Dec 28 2012 *)
    a[ n_] := If[ n<0, 0, n!^2 Assuming[ x>0, SeriesCoefficient[ Exp[ ExpIntegralEi[x] - Log[x] - EulerGamma], {x, 0, n}]]]; (* Michael Somos, Dec 28 2012 *)
    Table[Sum[BellY[n, k, 1/Range[n]], {k, 0, n}] n!, {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
  • PARI
    {a(n)=local(A=1+x,B);for(i=1,n,B=subst(A,x,x/(1-x+x*O(x^n)))/(1-x);A=1+intformal((B-A)/x));n!*polcoeff(A,n)}
    
  • PARI
    {a(n)=if(n<0,0,if(n==0,1,(n-1)!*sum(k=0,n-1,binomial(n,k)*a(k)/k!)))}
    
  • PARI
    {a(n)=n!^2*polcoeff(exp(sum(m=1,n,x^m/(m*m!))+x*O(x^n)),n)}

Formula

a(n) = (n-1)!* Sum_{k=0..n-1} binomial(n,k)*a(k)/k! for n>0 with a(0)=1.
a(n) = A193160(n+1)/(n+1).
E.g.f.: exp( Sum_{n>=1} x^n/(n*n!) ) = Sum_{n>=0} a(n)*x^n/n!^2.
a(n) = n! * A177208(n) / A177209(n) for n>=1 (see comment from Michael Somos).

A321296 Number T(n,k) of colored set partitions of [n] where colors of the elements of subsets are in (weakly) increasing order and exactly k colors are used; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 3, 0, 5, 20, 16, 0, 15, 122, 237, 131, 0, 52, 774, 2751, 3524, 1496, 0, 203, 5247, 30470, 68000, 65055, 22482, 0, 877, 38198, 341244, 1181900, 1913465, 1462320, 426833, 0, 4140, 298139, 3949806, 19946654, 48636035, 61692855, 39282229, 9934563
Offset: 0

Views

Author

Alois P. Heinz, Aug 29 2019

Keywords

Examples

			T(3,2) = 20: 1a2a3b, 1a2b3b, 1a|2a3b, 1a|2b3b, 1b|2a3a, 1b|2a3b, 1a3b|2a, 1b3b|2a, 1a3a|2b, 1a3b|2b, 1a2b|3a, 1b2b|3a, 1a2a|3b, 1a2b|3b, 1a|2a|3b, 1a|2b|3a, 1b|2a|3a, 1a|2b|3b, 1b|2a|3b, 1b|2b|3a.
Triangle T(n,k) begins:
  1;
  0,   1;
  0,   2,     3;
  0,   5,    20,     16;
  0,  15,   122,    237,     131;
  0,  52,   774,   2751,    3524,    1496;
  0, 203,  5247,  30470,   68000,   65055,   22482;
  0, 877, 38198, 341244, 1181900, 1913465, 1462320, 426833;
  ...
		

Crossrefs

Columns k=0-2 give: A000007, A000110 (for n>0), A325890.
Main diagonal gives A023998.
Row sums give A325888.
T(2n,n) gives A325889.
Cf. A322670.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(A(n-j, k)*
          binomial(n-1, j-1)*binomial(k+j-1, j), j=1..n))
        end:
    T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[A[n-j, k] Binomial[n-1, j-1]* Binomial[k + j - 1, j], {j, n}]];
    T[n_, k_] := Sum[A[n, k - i] (-1)^i Binomial[k, i], {i, 0, k}];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 30 2020, after Alois P. Heinz *)

A336227 a(0) = 1; a(n) = n * Sum_{k=0..n-1} binomial(n-1,k)^2 * a(k).

Original entry on oeis.org

1, 1, 4, 27, 292, 4425, 89106, 2280901, 71928872, 2728450017, 122145511510, 6354868381521, 379376236939404, 25710543779239501, 1960001963705060926, 166753195643254805565, 15724259680648667902096, 1633462474351643785483457, 185931510605274506452763166
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 12 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = n Sum[Binomial[n - 1, k]^2 a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 18}]
    nmax = 18; CoefficientList[Series[Exp[Sqrt[x] BesselI[1, 2 Sqrt[x]]], {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

a(n) = (n!)^2 * [x^n] exp(sqrt(x) * BesselI(1,2*sqrt(x))).

A061696 Generalized Bell numbers.

Original entry on oeis.org

1, 0, 1, 1, 19, 101, 1776, 23717, 515971, 11893597, 346475728, 11497161545, 444592761746, 19536147771219, 970739908493421, 54010183143383066, 3341831947578263267, 228462339968313577341, 17160142419913160027448, 1409008382280004776187961
Offset: 0

Views

Author

N. J. A. Sloane, Jun 19 2001

Keywords

Crossrefs

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(BesselI(0,2*sqrt(x)) - 1 - x). - Ilya Gutkovskiy, Jul 12 2020

Extensions

More terms from Ilya Gutkovskiy, Jul 12 2020

A336209 a(0) = 1; a(n) = -(1/n) * Sum_{k=0..n-1} binomial(n,k)^2 * (n-k) * a(k).

Original entry on oeis.org

1, -1, 1, 2, -15, -46, 880, 5837, -132783, -2109238, 35966256, 1440196097, -8909037720, -1504006716551, -16097564749643, 2021100230840147, 83130656159529937, -2475528081920694566, -331363460045748820376, -3874344448291316066455, 1255007424437046915956520
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 12 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = -(1/n) Sum[Binomial[n, k]^2 (n - k) a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 20}]
    nmax = 20; CoefficientList[Series[Exp[-Sum[x^k/(k!)^2, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

a(n) = (n!)^2 * [x^n] exp(-Sum_{k>=1} x^k / (k!)^2).
a(n) = (n!)^2 * [x^n] exp(1 - BesselI(0,2*sqrt(x))).
Showing 1-10 of 28 results. Next