A383080 Numbers k such that sopf(k) does not divide evenly sopfr(k).
12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 198
Offset: 1
Keywords
Examples
12 is a term because sopf(12)=5 does not evenly divide sopfr(12)=7. 18 is a term because sopf(18)=5 does not evenly divide sopfr(18)=8. 20 is a term because sopf(20)=7 does not evenly divide sopfr(20)=9.
Programs
-
Maple
filter:= proc(n) local F,t; F:= ifactors(n)[2]; add(t[1]*t[2],t=F) mod add(t[1],t=F) <> 0 end proc: select(filter, [$2..300]); # Robert Israel, Apr 16 2025
-
Mathematica
q[k_] := Module[{f = FactorInteger[k]}, !Divisible[Plus @@ Times @@@ f, Plus @@ f[[;; , 1]]]]; Select[Range[200], q] (* Amiram Eldar, Apr 16 2025 *)
-
PARI
isok(k) = if (k>1, my(f=factor(k)); sum(j=1, #f~, f[j,1]*f[j,2]) % sum(j=1, #f~, f[j,1])); \\ Michel Marcus, Apr 16 2025
-
Sage
def spf(k): fl = list(factor(k)) sr = sum(p * e for p, e in fl) sd = sum(p for p, _ in fl) return sd, sr def output(limit=198): results = [] for k in range(2, limit + 1): sd, sr = spf(k) if 0 < sd and sr % sd != 0: results.append(k) return results print(output())
Comments