A277976 a(n) = n*(3*n + 23).
0, 26, 58, 96, 140, 190, 246, 308, 376, 450, 530, 616, 708, 806, 910, 1020, 1136, 1258, 1386, 1520, 1660, 1806, 1958, 2116, 2280, 2450, 2626, 2808, 2996, 3190, 3390, 3596, 3808, 4026, 4250, 4480, 4716, 4958, 5206, 5460, 5720, 5986, 6258, 6536
Offset: 0
Examples
a(4) = 140. Indeed, the corresponding graph has 12 edges. We list the degrees of their endpoints: (2,2), (2,2), (2,6), (2,6), (3,3), (3,3), (3,3), (3,3), (3,6), (3,6), (3,6), (3,6). Then, the second Zagreb index is 4 + 4 + 12 + 12 + 9 + 9 + 9 + 9 + 18 + 18 + 18 + 18 = 140.
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Maple
seq(n*(3*n+23), n = 0..50);
-
Mathematica
Table[n(3n+23),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,26,58},50] (* Harvey P. Dale, Sep 30 2017 *)
-
PARI
a(n)=n*(3*n+23) \\ Charles R Greathouse IV, Jun 17 2017
Formula
G.f.: 2*x*(13-10*x)/(1-x)^3.
a(n) = 2*A370238(n). - R. J. Mathar, Apr 22 2024
Sum_{n>=1} 1/a(n) = 823467/5539688 + sqrt(3)*Pi/138-3*log(3)/46 = 0.11643041... - R. J. Mathar, Apr 22 2024
E.g.f.: exp(x)*x*(26 + 3*x). - Stefano Spezia, Apr 26 2024
Comments