A215684 Let p=prime=a(n); then a(n+1) = smallest prime q>p such that 2p+q and 2q+p are both primes.
3, 5, 7, 17, 67, 107, 277, 353, 487, 557, 787, 797, 853, 983, 1033, 1163, 1597, 1637, 1657, 1697, 1867, 1913, 2347, 2543, 2833, 2897, 2953, 2957, 3343, 3413, 3607, 3623, 3643, 3863, 3907, 4013, 4447, 4583, 4987, 5087, 5113, 5507, 6277, 6653, 7027, 7433, 7603
Offset: 1
Keywords
Examples
2*3+5=11 and 2*5+3=13 are both prime, so a(2) = 5. 2*7+17=31 and 2*17+7=41 are both prime, so a(4) = 17.
Links
- Zak Seidov, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A181848.
Programs
-
Mathematica
a=3;s={a};m=100;Do[n1=PrimePi[a]+1;Do[b=Prime[n];If[PrimeQ[2*a+b]&&PrimeQ[2*b+a],AppendTo[s,b];a=b;Break[]],{n,n1,n1+100000}],{m-1}];s spq[n_]:=Module[{p=NextPrime[n]},While[!PrimeQ[2n+p]||!PrimeQ[2p+n],p=NextPrime[p]];p]; NestList[spq,3,50] (* Harvey P. Dale, Apr 06 2019 *)