A215689 Smallest prime whose decimal expansion consists of the concatenation of a 1-digit square, a 2-digit square, a 3-digit square, ..., and an n-digit square, or 0 if there is no such prime.
0, 149, 125441, 1161002209, 116100102414161, 116100102410000106929, 1161001024100001004891442401, 116100102410000100489100000010169721, 116100102410000100489100000010004569100460529, 1161001024100001004891000000100045691000000001009269361
Offset: 1
Examples
a(2) = 149, which is a prime, and the concatenation of 1 = 1^2 with 49 = 7^2. a(3) = 125441, which is a prime, and the 1 = 1^2 with 25 = 5^2 with 441 = 21^2.
Links
- M. F. Hasler, Table of n, a(n) for n = 1..44 (all terms < 10^1000), Dec 31 2020.
Programs
-
PARI
apply( {A215689(n)=forvec(v=vector(n, k, [ceil(10^((k-1)/2)), sqrtint(10^k-1)]), ispseudoprime(n=eval(concat([Str(k^2)|k<-v])))&&return(n))}, [1..11]) \\ M. F. Hasler, Dec 31 2020
Formula
a(n) ~ 10^(n(n+1)/2) * 0.1161001024100001004891000000100045691... - M. F. Hasler, Dec 31 2020
Extensions
More terms (up to a(10)) from Alois P. Heinz, Aug 21 2012
Comments