cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215694 a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3) with a(0)=1, a(1)=2, a(2)=7.

Original entry on oeis.org

1, 2, 7, 24, 80, 263, 859, 2797, 9094, 29547, 95968, 311652, 1011999, 3286051, 10669913, 34645258, 112492863, 365262680, 1186001480, 3850924183, 12503874715, 40599829957, 131826825678, 428039023363, 1389833992704, 4512762649020, 14652848312239, 47577499659779, 154483171074481, 501603705725970, 1628697001842743
Offset: 0

Views

Author

Roman Witula, Aug 21 2012

Keywords

Comments

The Berndt-type sequence number 9 for the argument 2Pi/7 defined by the first trigonometric relation from section "Formula". For more connections with another sequences of trigonometric nature see comments to A215512 (a(n) is equal to the sequence b(n) in these comments) and Witula-Slota's reference (Section 3). We note that a(n)=A109682(n) for n=1,2,3,4. Moreover the following summation formula hold true: sum{k=3,..,n} a(k) = 5*a(n-1) - a(n-2) - 9, for every n=3,4,... - see comments to A215512.
The inverse binomial transform is 1,1, 4, 8, 19, 42, 95,... essentially a shifted, unsigned variant of A215112. - R. J. Mathar, Aug 22 2012

Examples

			We have 10*a(3) = 3*a(4), a(0)+a(1)+3*a(2) = a(3), a(0)+a(2)+3*a(3) = a(4), a(1)+3*a(2)+3*a(4) = a(5), and a(6) = 3*a(5)+3*a(4)-a(1).
		

Crossrefs

Programs

  • Magma
    I:=[1,2,7]; [n le 3 select I[n] else 5*Self(n-1) - 6*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 25 2018
  • Mathematica
    LinearRecurrence[{5,-6,1}, {1,2,7}, 50]
  • PARI
    Vec((1-3*x+3*x^2)/(1-5*x+6*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Oct 01 2012
    

Formula

sqrt(7)*a(n) = s(4)*c(1)^(2*n) + s(1)*c(2)^(2*n) + s(2)*c(4)^(2*n), where c(j):=2*cos(2*Pi*j/7) and s(j):=2*sin(2*Pi*j/7).
G.f.: (1-3*x+3*x^2)/(1-5*x+6*x^2-x^3).
a(n) = A005021(n)-3*A005021(n-1)+3*A005021(n-2). - R. J. Mathar, Aug 22 2012