cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215703 A(n,k) is the n-th derivative of f_k at x=1, and f_k is the k-th of all functions that are representable as x^x^...^x with m>=1 x's and parentheses inserted in all possible ways; square array A(n,k), n>=0, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 4, 3, 0, 1, 1, 2, 12, 8, 0, 1, 1, 6, 9, 52, 10, 0, 1, 1, 4, 27, 32, 240, 54, 0, 1, 1, 2, 18, 156, 180, 1188, -42, 0, 1, 1, 2, 15, 100, 1110, 954, 6804, 944, 0, 1, 1, 8, 9, 80, 650, 8322, 6524, 38960, -5112, 0, 1, 1, 6, 48, 56, 590, 4908, 70098, 45016, 253296, 47160, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2012

Keywords

Comments

A000081(m) distinct functions are representable as x^x^...^x with m>=1 x's and parentheses inserted in all possible ways. Some functions are representable in more than one way, the number of valid parenthesizations is A000108(m-1). The f_k are ordered, such that the number m of x's in f_k is a nondecreasing function of k. The exact ordering is defined by the algorithm below.
The list of functions f_1, f_2, ... begins:
| f_k : m : function (tree) : representation(s) : sequence |
+-----+---+------------------+--------------------------+----------+
| f_1 | 1 | x -> x | x | A019590 |
| f_2 | 2 | x -> x^x | x^x | A005727 |
| f_3 | 3 | x -> x^(x*x) | (x^x)^x | A215524 |
| f_4 | 3 | x -> x^(x^x) | x^(x^x) | A179230 |
| f_5 | 4 | x -> x^(x*x*x) | ((x^x)^x)^x | A215704 |
| f_6 | 4 | x -> x^(x^x*x) | (x^x)^(x^x), (x^(x^x))^x | A215522 |
| f_7 | 4 | x -> x^(x^(x*x)) | x^((x^x)^x) | A215705 |
| f_8 | 4 | x -> x^(x^(x^x)) | x^(x^(x^x)) | A179405 |

Examples

			Square array A(n,k) begins:
  1,   1,    1,    1,     1,     1,     1,     1, ...
  1,   1,    1,    1,     1,     1,     1,     1, ...
  0,   2,    4,    2,     6,     4,     2,     2, ...
  0,   3,   12,    9,    27,    18,    15,     9, ...
  0,   8,   52,   32,   156,   100,    80,    56, ...
  0,  10,  240,  180,  1110,   650,   590,   360, ...
  0,  54, 1188,  954,  8322,  4908,  5034,  2934, ...
  0, -42, 6804, 6524, 70098, 41090, 47110, 26054, ...
		

Crossrefs

Programs

  • Maple
    T:= proc(n) T(n):=`if`(n=1, [x], map(h-> x^h, g(n-1$2))) end:
    g:= proc(n, i) option remember; `if`(i=1, [x^n], [seq(seq(
          seq(mul(T(i)[w[t]-t+1], t=1..j)*v, v=g(n-i*j, i-1)), w=
          combinat[choose]([$1..nops(T(i))+j-1], j)), j=0..n/i)])
        end:
    f:= proc() local i, l; i, l:= 0, []; proc(n) while n>
          nops(l) do i:= i+1; l:= [l[], T(i)[]] od; l[n] end
        end():
    A:= (n, k)-> n!*coeff(series(subs(x=x+1, f(k)), x, n+1), x, n):
    seq(seq(A(n, 1+d-n), n=0..d), d=0..12);
  • Mathematica
    T[n_] := If[n == 1, {x}, Map[x^#&, g[n - 1, n - 1]]];
    g[n_, i_] := g[n, i] = If[i == 1, {x^n}, Flatten @ Table[ Table[ Table[ Product[T[i][[w[[t]] - t + 1]], {t, 1, j}]*v, {v, g[n - i*j, i - 1]}], {w, Subsets[ Range[ Length[T[i]] + j - 1], {j}]}], {j, 0, n/i}]];
    f[n_] := Module[{i = 0, l = {}}, While[n > Length[l], i++; l = Join[l, T[i]]]; l[[n]]];
    A[n_, k_] := n! * SeriesCoefficient[f[k] /. x -> x+1, {x, 0, n}];
    Table[Table[A[n, 1+d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Nov 08 2019, after Alois P. Heinz *)