A215720 The number of functions f:{1,2,...,n}->{1,2,...,n}, endofunctions, such that exactly one nonrecurrent element is mapped into each recurrent element.
1, 0, 2, 6, 60, 560, 7350, 111552, 2009672, 41378976, 963527850, 25009038560, 716437784172, 22453784964624, 764345507271710, 28085186967504240, 1107971902218683280, 46710909213378892352, 2095883952368863510098, 99724281567446320231104, 5015524096516005263567540
Offset: 0
Keywords
Examples
a(2) = 2 because we have: (1->1,2->1), (1->2,2->2).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..150
Programs
-
Maple
a:= n-> `if`(n=0, 1, n! *add(i*(n-i)^(n-2*i-1)/(n-2*i)!, i=0..n/2)): seq(a(n), n=0..30); # Alois P. Heinz, Aug 22 2012
-
Mathematica
nn = 20; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; Range[0, nn]! CoefficientList[Series[1/(1 - x t) , {x, 0, nn}], x]
Formula
E.g.f.: 1/(1 - x*T(x)) where T(x) is the e.g.f. for A000169.
a(n) = n! * Sum_{i=0..floor(n/2)} i*(n-i)^(n-2*i-1)/(n-2*i)! for n>0, a(0) = 1. - Alois P. Heinz, Aug 22 2012
a(n) ~ exp(1)/(exp(1)-1)^2 * n^(n-1). - Vaclav Kotesovec, Sep 30 2013
Comments