A215726 Numbers k such that the k-th triangular number is squarefree.
1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 19, 20, 21, 22, 28, 29, 30, 33, 34, 37, 38, 41, 42, 43, 46, 51, 52, 57, 58, 59, 60, 61, 65, 66, 67, 68, 69, 70, 73, 76, 77, 78, 82, 83, 84, 85, 86, 91, 92, 93, 94, 101, 102, 105, 106, 109, 110, 113, 114, 115, 118, 122, 123
Offset: 1
Keywords
Examples
14 is a term because A000217(14) = 14*15/2 = 105 = 3*5*7.
References
- Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 184.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Zak Seidov)
- Andrew Granville and Olivier Ramaré, Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients, Mathematika, Vol. 43, No. 1 (1996), pp. 73-107; alternative link.
Programs
-
Mathematica
Select[Range[123],SquareFreeQ[#(#+1)/2]&] Position[Accumulate[Range[150]],?(SquareFreeQ[#]&)]//Flatten//Rest (* _Harvey P. Dale, Jul 07 2020 *)
-
PARI
is(n)=issquarefree(n/gcd(n,2))&&issquarefree((n+1)/gcd(n+1,2)) \\ Charles R Greathouse IV, Jun 06 2013
Formula
Numbers k such that A000217(k) is squarefree. [corrected by Zak Seidov, Jun 05 2013]
Comments