cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A061304 Squarefree triangular numbers.

Original entry on oeis.org

1, 3, 6, 10, 15, 21, 55, 66, 78, 91, 105, 190, 210, 231, 253, 406, 435, 465, 561, 595, 703, 741, 861, 903, 946, 1081, 1326, 1378, 1653, 1711, 1770, 1830, 1891, 2145, 2211, 2278, 2346, 2415, 2485, 2701, 2926, 3003, 3081, 3403, 3486, 3570, 3655, 3741, 4186, 4278
Offset: 1

Views

Author

Amarnath Murthy, Apr 26 2001

Keywords

Examples

			105 = 3 * 5 * 7 is a squarefree triangular number.
		

Crossrefs

Programs

  • Maple
    # uses code of A000217
    isA061304 := proc(n)
        isA000217(n) and issqrfree(n) ;
        simplify(%) ;
    end proc:
    for n from 1 to 5000 do
        if isA061304(n) then
            printf("%d,",n);
        end if;
    end do: # R. J. Mathar, Oct 05 2017
  • Mathematica
    Select[Accumulate[Range[0, 100]], SquareFreeQ] (* Jean-François Alcover, Apr 17 2020 *)
  • PARI
    isA078779F(f)=for(i=2,#f~, if(f[i,2]>1, return(0))); #f~==0 || f[1,2]==1 || (f[1,2]==2 && f[1,1]==2)
    list(lim)=my(v=List(), ok=1); forfactored(n=2, (sqrtint(lim\1*8+1)+1)\2, e=n[2][,2]; if(isA078779F(n[2]), if(ok, listput(v, binomial(n[1],2)), ok=1), ok=0)); Vec(v) \\ Charles R Greathouse IV, Nov 05 2017

Formula

A010054(a(n))*A008966(a(n)) = 1. - Reinhard Zumkeller, Nov 01 2009
a(n) = A000217(A215726(n)). - Zak Seidov, Aug 22 2012

A067197 Numbers k such that k*(k+1)/2 is not squarefree.

Original entry on oeis.org

7, 8, 9, 15, 16, 17, 18, 23, 24, 25, 26, 27, 31, 32, 35, 36, 39, 40, 44, 45, 47, 48, 49, 50, 53, 54, 55, 56, 62, 63, 64, 71, 72, 74, 75, 79, 80, 81, 87, 88, 89, 90, 95, 96, 97, 98, 99, 100, 103, 104, 107, 108, 111, 112, 116, 117, 119, 120, 121, 124, 125, 126, 127, 128
Offset: 1

Views

Author

Benoit Cloitre, Feb 19 2002

Keywords

Comments

The asymptotic density of this sequence is 1 - (3/2)*A065474 = 0.5160488515... (Granville and Ramaré, 1996). - Amiram Eldar, Mar 02 2021

Crossrefs

Complement of A215726.

Programs

A175608 Characteristic function of squarefree triangular integers: 1 if n(n+1)/2 is squarefree else 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1
Offset: 1

Views

Author

Zak Seidov, Jul 23 2010

Keywords

Crossrefs

Cf. A008966 (1 if n is squarefree, else 0), A010051 (Characteristic function of primes: 1 if n is prime else 0).

Programs

  • Mathematica
    Table[If[SquareFreeQ[n(n+1)/2],1,0],{n,200}]
    If[SquareFreeQ[#],1,0]&/@Accumulate[Range[120]] (* Harvey P. Dale, Nov 22 2022 *)

Formula

a(n) = A008966(n(n+1)/2).
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = (3/2)*A065474 = 0.4839511484... . - Amiram Eldar, May 10 2022
Showing 1-3 of 3 results.