cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A215730 a(n) is the smallest m for which 7^m contains n consecutive identical digits.

Original entry on oeis.org

0, 6, 31, 71, 172, 175, 1961, 6176, 33836, 61282, 305871, 856635, 2135396, 7291510, 11032874, 30775389
Offset: 1

Views

Author

V. Raman, Aug 22 2012

Keywords

Comments

a(13) > 1116000. - Chai Wah Wu, Dec 17 2014
a(14) > 7*10^6. - Giovanni Resta, Apr 20 2016

Examples

			7^31 = 157775382034845806615042743 contains 3 consecutive identical digits.
		

Crossrefs

Programs

  • Python
    import sys
    sys.set_int_max_str_digits(200000)
    def a(n):
      st = "0123456789"
      for k in range(10**6):
        s = str(7**k)
        tot = 0
        for i in st:
          if s.count(i*n) > 0:
            tot += 1
            break
        if tot > 0:
          return k
    n = 1
    while n < 10:
      print(a(n), end=', ')
      n += 1
    # Derek Orr, Jul 28 2014
    
  • Python
    def A215730(n):
        l, x = [str(d)*n for d in range(10)], 1
        for m in range(10**9):
            s = str(x)
            for k in l:
                if k in s:
                    return m
            x *= 7
        return 'search limit reached'
    # Chai Wah Wu, Dec 17 2014

Extensions

Added a(10), Rick van der Hoorn, Mar 26 2013
a(11)-a(12) from Hiroaki Yamanouchi, Aug 29 2014
a(13) from Giovanni Resta, Apr 19 2016
a(14)-a(15) from Bert Dobbelaere, Feb 15 2019
a(16) from Paul Geneau de Lamarlière, Jul 16 2024

A217171 a(n) is the first digit (from the left) to appear six times in succession in the decimal representation n^A217161(n).

Original entry on oeis.org

8, 8, 7, 2, 1, 7, 7, 8, 0, 0, 0, 2, 4, 4, 7, 4, 6, 1, 0, 2, 9, 4, 4, 5, 9, 0, 7, 4, 0, 2, 3, 9, 4, 6, 8, 0, 3, 0, 0, 0, 6, 1, 1, 5, 3, 1, 6, 0, 0, 9, 0, 2, 7, 8, 4, 7, 6, 9, 0, 2, 5, 7, 7, 5, 9, 6, 4, 7, 0, 3, 4, 0, 4, 7, 3, 1, 2, 3, 0, 0, 0, 5, 1, 2, 3, 2, 1
Offset: 2

Views

Author

V. Raman, Sep 27 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[k = 1; While[d = IntegerDigits[n^k]; df = Partition[Differences[d], 5, 1]; ! MemberQ[df, {0, 0, 0, 0, 0}], k++]; d[[Position[df, {0, 0, 0, 0, 0}][[1, 1]]]], {n, 2, 100}] (* T. D. Noe, Oct 02 2012 *)

A217167 a(n) is the first digit (from the left) to appear two times in succession in the decimal representation of n^A217157(n).

Original entry on oeis.org

5, 7, 5, 8, 7, 1, 4, 4, 0, 1, 4, 4, 4, 2, 5, 3, 8, 9, 0, 4, 2, 8, 3, 4, 1, 4, 7, 1, 0, 8, 3, 3, 1, 2, 6, 7, 4, 4, 0, 1, 8, 8, 4, 1, 1, 2, 1, 1, 0, 7, 1, 8, 1, 5, 4, 5, 3, 1, 0, 2, 4, 0, 4, 2, 6, 4, 4, 2, 0, 1, 0, 3, 2, 7, 7, 7, 5, 0, 0, 4, 5, 8, 1, 2, 0, 3, 8
Offset: 2

Views

Author

V. Raman, Sep 27 2012

Keywords

Comments

Note that 109^2 = 11881. So by looking at the digits from the left, we have a(109) = 1.

Crossrefs

Programs

  • Mathematica
    Table[k = 1; While[d = IntegerDigits[n^k]; ! MemberQ[df = Differences[d], 0], k++]; d[[Position[df, 0][[1, 1]]]], {n, 2, 100}] (* T. D. Noe, Oct 02 2012 *)

A217168 a(n) is the first digit (from the left) to appear three times in succession in the decimal representation of n^A217158(n).

Original entry on oeis.org

7, 8, 7, 8, 7, 7, 7, 8, 0, 8, 1, 6, 1, 2, 7, 2, 2, 7, 0, 2, 8, 6, 7, 8, 4, 5, 6, 1, 0, 1, 7, 4, 7, 5, 6, 3, 4, 5, 0, 5, 1, 1, 7, 4, 5, 6, 5, 1, 0, 8, 5, 1, 1, 3, 0, 1, 0, 1, 0, 3, 8, 4, 7, 2, 9, 6, 8, 7, 0, 2, 2, 8, 2, 7, 3, 4, 5, 5, 0, 8, 7, 0, 7, 5, 2, 7, 2
Offset: 2

Views

Author

V. Raman, Sep 27 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[k = 1; While[d = IntegerDigits[n^k]; ! MemberQ[df = Partition[Differences[d], 2, 1], {0, 0}], k++]; d[[Position[df, {0, 0}][[1, 1]]]], {n, 2, 100}] (* T. D. Noe, Oct 02 2012 *)

A217169 a(n) is the first digit (from the left) to appear four times in succession in the decimal representation of n^A217159(n).

Original entry on oeis.org

5, 5, 8, 7, 0, 9, 8, 5, 0, 7, 3, 6, 1, 2, 8, 9, 5, 1, 0, 4, 4, 7, 7, 8, 2, 5, 1, 0, 0, 9, 8, 6, 5, 5, 2, 6, 5, 6, 0, 9, 6, 7, 6, 5, 1, 6, 2, 2, 0, 6, 6, 3, 3, 1, 0, 3, 1, 1, 0, 7, 6, 2, 8, 3, 5, 9, 6, 8, 0, 1, 4, 8, 6, 3, 8, 1, 7, 9, 0, 5, 6, 9, 1, 2, 8, 1, 8
Offset: 2

Views

Author

V. Raman, Sep 27 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[k = 1; While[d = IntegerDigits[n^k]; df = Partition[Differences[d], 3, 1]; ! MemberQ[df, {0, 0, 0}], k++]; d[[Position[df, {0, 0, 0}][[1, 1]]]], {n, 2, 100}] (* T. D. Noe, Oct 02 2012 *)

A217170 a(n) is the first digit (from the left) to appear five times in succession in the decimal representation of n^A217160(n).

Original entry on oeis.org

6, 5, 6, 4, 2, 5, 4, 5, 0, 6, 5, 4, 4, 1, 6, 5, 5, 9, 0, 2, 8, 6, 2, 5, 9, 2, 1, 8, 0, 2, 6, 8, 2, 6, 2, 6, 3, 8, 0, 8, 7, 0, 1, 7, 6, 3, 6, 5, 0, 6, 9, 6, 6, 9, 2, 2, 4, 4, 0, 4, 9, 4, 2, 3, 4, 4, 8, 5, 0, 2, 9, 9, 0, 9, 9, 0, 9, 6, 0, 0, 4, 9, 1, 0, 6, 1, 2
Offset: 2

Views

Author

V. Raman, Sep 27 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[k = 1; While[d = IntegerDigits[n^k]; df = Partition[Differences[d], 4, 1]; ! MemberQ[df, {0, 0, 0, 0}], k++]; d[[Position[df, {0, 0, 0, 0}][[1, 1]]]], {n, 2, 100}] (* T. D. Noe, Oct 02 2012 *)

A217172 a(n) is the first digit (from the left) to appear seven times in succession in the decimal representation of n^A217162(n).

Original entry on oeis.org

7, 2, 7, 8, 2, 3, 7, 2, 0, 6, 4, 6, 3, 2, 7, 9, 4, 9, 0, 4, 2, 4, 5, 8, 4, 2, 5, 6, 0, 2, 2, 3, 8, 7, 2, 5, 3, 0, 0, 4, 1, 9, 2, 7, 0, 8, 1, 6, 0, 4, 4, 2, 1, 2, 3, 1, 3, 4, 0, 2, 8, 8, 7, 5, 1, 7, 6, 9, 0, 4, 8, 1, 7, 5, 9, 6, 4, 3, 0, 2, 1, 1, 7, 8, 7, 8, 8
Offset: 2

Views

Author

V. Raman, Sep 27 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[k = 1; While[d = IntegerDigits[n^k]; df = Partition[Differences[d], 6, 1]; ! MemberQ[df, {0, 0, 0, 0, 0, 0}],  k++]; d[[Position[df, {0, 0, 0, 0, 0, 0}][[1, 1]]]], {n, 2, 100}] (* T. D. Noe, Oct 02 2012 *)

A217175 a(n) is the first digit (from the left) to appear n times in succession in the decimal representation of the Fibonacci(A217165(n)).

Original entry on oeis.org

0, 5, 7, 7, 1, 5, 7, 7, 3, 2, 4, 3, 4, 2, 4
Offset: 1

Views

Author

V. Raman, Sep 27 2012

Keywords

Crossrefs

Programs

  • Mathematica
    k = 0; Join[{0}, Table[While[d = IntegerDigits[Fibonacci[k]]; prt = Partition[Differences[d], n - 1, 1]; ! MemberQ[prt, Table[0, {n - 1}]], k++]; d[[Position[prt, Table[0, {n - 1}]][[1, 1]]]], {n, 2, 8}]] (* T. D. Noe, Oct 03 2012 *)
  • Python
    def A217175(n):
        if n == 1:
            return 0
        else:
            l, y, x = [str(d)*n for d in range(10)], 0, 1
            for m in range(1, 10**9):
                s = str(x)
                for k in range(10):
                    if l[k] in s:
                        return k
                y, x = x, y+x
            return 'search limit reached'
    # Chai Wah Wu, Dec 17 2014

Extensions

a(10)-a(11) from Chai Wah Wu, Dec 17 2014
a(12)-a(15) from Nick Hobson, Feb 14 2024

A217176 a(n) is the first digit (from the left) to appear n times in succession in the decimal representation of the Lucas(A217166(n)).

Original entry on oeis.org

2, 1, 3, 0, 2, 2, 9, 7, 2, 1, 1, 5, 5, 7, 7, 9
Offset: 1

Views

Author

V. Raman, Sep 27 2012

Keywords

Crossrefs

Programs

  • Mathematica
    k = 0; Join[{2}, Table[While[d = IntegerDigits[LucasL[k]]; prt = Partition[Differences[d], n - 1, 1]; ! MemberQ[prt, Table[0, {n - 1}]], k++]; d[[Position[prt, Table[0, {n - 1}]][[1, 1]]]], {n, 2, 8}]] (* T. D. Noe, Oct 03 2012 *)
  • Python
    def A217176(n):
        if n == 1:
            return 2
        else:
            l, y, x = [str(d)*n for d in range(10)], 2, 1
            for m in range(1, 10**9):
                s = str(x)
                for k in range(10):
                    if l[k] in s:
                        return k
                y, x = x, y+x
            return 'search limit reached'
    # Chai Wah Wu, Dec 17 2014

Extensions

a(11) from Chai Wah Wu, Dec 17 2014
a(12)-a(16) from Nick Hobson, Feb 03 2024

A217173 a(n) is the first digit (from the left) to appear eight times in succession in the decimal representation of n^A217163(n).

Original entry on oeis.org

1, 1, 1, 5, 7, 1, 2, 1, 0, 0, 2, 8, 3, 8, 0, 8, 8, 5, 0, 0, 5, 5, 7, 5, 4, 5, 8, 4, 0, 1, 1, 2, 7, 7, 2, 5, 5, 7, 0, 6, 8, 1, 2, 3, 6, 6, 5, 1, 0, 0, 4, 3, 5, 8, 4, 5, 3, 6, 0, 2, 9, 8, 2, 4, 1, 2, 8, 5, 0, 0, 9, 6, 8, 0, 3, 6, 4, 3, 0, 1, 0, 5, 7, 9, 7, 8, 1
Offset: 2

Views

Author

V. Raman, Sep 27 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[k = 1; While[d = IntegerDigits[n^k]; df = Partition[Differences[d], 7, 1]; ! MemberQ[df, {0, 0, 0, 0, 0, 0, 0}],  k++]; d[[Position[df, {0, 0, 0, 0, 0, 0, 0}][[1, 1]]]], {n, 2, 10}] (* T. D. Noe, Oct 02 2012 *)
Showing 1-10 of 12 results. Next