A215771 Number T(n,k) of undirected labeled graphs on n nodes with exactly k cycle graphs as connected components; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 3, 7, 6, 1, 0, 12, 25, 25, 10, 1, 0, 60, 127, 120, 65, 15, 1, 0, 360, 777, 742, 420, 140, 21, 1, 0, 2520, 5547, 5446, 3157, 1190, 266, 28, 1, 0, 20160, 45216, 45559, 27342, 10857, 2898, 462, 36, 1, 0, 181440, 414144, 427275, 264925, 109935, 31899, 6300, 750, 45, 1
Offset: 0
Examples
T(4,1) = 3: .1-2. .1 2. .1-2. . .| |. .|X|. . X . . .3-4. .3 4. .3-4. . T(4,2) = 7: .1 2. .1-2. .1 2. o1 2. .1 2o .1-2. .1-2. . .| |. . . . X . . /|. .|\ . . \|. .|/ . . .3 4. .3-4. .3 4. .3-4. .3-4. o3 4. .3 4o . T(4,3) = 6: .1 2o .1-2. o1 2. o1 2o o1 2. .1 2o . .| . . . . |. . . . / . . \ . . .3 4o o3 4o o3 4. .3-4. .3 4o o3 4. . T(4,4) = 1: o1 2o . . . . o3 4o Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 0, 1, 3, 1; 0, 3, 7, 6, 1; 0, 12, 25, 25, 10, 1; 0, 60, 127, 120, 65, 15, 1; 0, 360, 777, 742, 420, 140, 21, 1;
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
T:= proc(n, k) option remember; `if`(k<0 or k>n, 0, `if`(n=0, 1, add(binomial(n-1, i)*T(n-1-i, k-1)*ceil(i!/2), i=0..n-k))) end: seq(seq(T(n, k), k=0..n), n=0..12); # Alternatively, with the function BellMatrix defined in A264428: BellMatrix(n -> `if`(n<2, 1, n!/2), 8); # Peter Luschny, Jan 21 2016
-
Mathematica
t[n_, k_] := t[n, k] = If[k < 0 || k > n, 0, If[n == 0, 1, Sum[Binomial[n-1, i]*t[n-1-i, k-1]*Ceiling[i!/2], {i, 0, n-k}]]]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *) rows = 10; t = Table[If[n<2, 1, n!/2], {n, 0, rows}]; T[n_, k_] := BellY[n, k, t]; Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
-
Sage
# uses[bell_matrix from A264428] bell_matrix(lambda n: factorial(n)//2 if n>=2 else 1, 8)
Comments