cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215853 Number of simple labeled graphs on n nodes with exactly 3 connected components that are trees or cycles.

Original entry on oeis.org

1, 6, 55, 540, 6412, 90734, 1515097, 29368155, 649910349, 16178495157, 447436384356, 13607804913248, 451277483034618, 16204761730619392, 626327433705523558, 25924177756443661632, 1144012780063556028591, 53615833082093775740400, 2659498185704802765924159
Offset: 3

Views

Author

Alois P. Heinz, Aug 25 2012

Keywords

Examples

			a(4) = 6:
.1-2.  .1 2.  .1 2.  .1 2.  .1 2.  .1 2.
.   .  .  |.  .   .  .|  .  . \ .  . / .
.4 3.  .4 3.  .4-3.  .4 3.  .4 3.  .4 3.
		

Crossrefs

Column k=3 of A215861.
The unlabeled version is A215983.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
          `if`(n=0, 1, add(binomial(n-1, i)*T(n-1-i, k-1)*
          `if`(i<2, 1, i!/2 +(i+1)^(i-1)), i=0..n-k)))
        end:
    a:= n-> T(n, 3):
    seq(a(n), n=3..25);
  • Mathematica
    T[n_, k_] := T[n, k] = If[k<0 || k>n, 0, If[n == 0, 1, Sum[Binomial[n-1, i]*T[n-1-i, k-1]*If[i<2, 1, i!/2 + (i+1)^(i-1)], {i, 0, n-k}]]];
    a[n_] := T[n, 3];
    Table[a[n], {n, 3, 25}] (* Jean-François Alcover, Apr 01 2017, translated from Maple *)

Formula

a(n) ~ c * n^(n-2), where c = 0.130848879059... . - Vaclav Kotesovec, Sep 07 2014